DOI QR코드

DOI QR Code

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae (Department of Environmental Engineering and Energy, Myongji University) ;
  • Nam, Ji-Hyun (Water Supply and Sewerage Research Division, National Institute of Environmental Research) ;
  • Kim, Dong-Min (Department of Environmental Engineering and Energy, Myongji University) ;
  • Song, Chulwoo (BKT Co. Ltd.) ;
  • Jahng, Deokjin (Department of Environmental Engineering and Energy, Myongji University)
  • 투고 : 2018.12.20
  • 심사 : 2019.03.13
  • 발행 : 2020.04.30

초록

This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.

키워드

참고문헌

  1. Ji M, Abou-Shanab RA, Hwang J, et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. 2013;139:1198-1205. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726
  2. Ji M, Kim H, Sapireddy VR, et al. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 2013;97:2701-2710. https://doi.org/10.1007/s00253-012-4097-x
  3. ECOREA. Livestock manure statistics [Internet]. Ministry of Environment Republic of Korea; [cited 16 May 2018]. Available from: http://www.me.go.kr/home/file/readDownloadFile.do?fileId=150181&fileSeq=1.
  4. Park J, Jin HF, Lim BR, Park KY, Lee K. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 2010;101:8649-8657. https://doi.org/10.1016/j.biortech.2010.06.142
  5. Zhu L, Wang Z, Shu Q, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47:4294-4302. https://doi.org/10.1016/j.watres.2013.05.004
  6. Zhang L, Jahng D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: Effects of alkali types. J. Hazard. Mater. 2010;182:536-543. https://doi.org/10.1016/j.jhazmat.2010.06.065
  7. Zhang L, Lee Y, Jahng D. Ammonia stripping for enhanced biomethanization of piggery wastewater. J. Hazard. Mater. 2012;199:36-42. https://doi.org/10.1016/j.jhazmat.2011.10.049
  8. Cheng J, Liu B. Swine wastewater treatment in anaerobic digesters with floating medium. Trans. ASAE 2002;45:799.
  9. Noike T, Goo I, Matsumoto H, Miyahara T. Development of a new type of anaerobic digestion process equipped with the function of nitrogen removal. Water Sci. Technol. 2004;49:173-179.
  10. Carney K, Rodgers M, Lawlor P, Zhan X. Treatment of separated piggery anaerobic digestate liquid using woodchip biofilters. Environ. Technol. 2013;34:663-670. https://doi.org/10.1080/09593330.2012.710408
  11. Kwon G, Kang J, Nam J, Kim Y, Jahng D. Recovery of ammonia through struvite production using anaerobic digestate of piggery wastewater and leachate of sewage sludge ash. Environ. Technol. 2018;39:831-842. https://doi.org/10.1080/09593330.2017.1312550
  12. Jaafarzadeh Haghighi Fard NA, Jorfi S, Ahmadi M, Mirali S, Kujlu R. Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process. Environ. Health Eng. Manage. J. 2016;3:35-40.
  13. Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006;28:64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  14. Olguin EJ, Galicia S, Mercado G, Perez T. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J. Appl. Phycol. 2003;15:249-257. https://doi.org/10.1023/A:1023856702544
  15. Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability. Water Res. 2015;83:42-51. https://doi.org/10.1016/j.watres.2015.06.007
  16. Posadas E, Morales M, Gomez C, Acien FG, Munoz R. Influence of pH and $CO_2$ source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem. Eng. J. 2015;265:239-248. https://doi.org/10.1016/j.cej.2014.12.059
  17. Hoffmann JP. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 1998;34:757-763. https://doi.org/10.1046/j.1529-8817.1998.340757.x
  18. Garcia J, Green BF, Lundquist T, Mujeriego R, Hernandez-Marine M, Oswald WJ. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour. Technol. 2006;97:1709-1715. https://doi.org/10.1016/j.biortech.2005.07.019
  19. Li Y, Chen Y, Chen P, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 2011;102:5138-5144. https://doi.org/10.1016/j.biortech.2011.01.091
  20. Wang L, Li Y, Chen P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010;101:2623-2628. https://doi.org/10.1016/j.biortech.2009.10.062
  21. Wang L, Min M, Li Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010;162:1174-1186. https://doi.org/10.1007/s12010-009-8866-7
  22. Xu M, Xu S, Bernards M, Hu Z. Evaluation of high density algal cultivation for secondary wastewater polishing. Water Environ. Res. 2016;88:47-53. https://doi.org/10.2175/106143015X14362865227599
  23. Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. J. Appl. Phycol. 2007;19:417-423. https://doi.org/10.1007/s10811-006-9148-1
  24. Kim HC, Choi WJ, Maeng SK, Kim HJ, Kim HS, Song KG. Ozonation of piggery wastewater for enhanced removal of contaminants by S. quadricauda and the impact on organic characteristics. Bioresour. Technol. 2014;159:128-135. https://doi.org/10.1016/j.biortech.2014.02.061
  25. Zhen-Feng S, Xin L, Hong-Ying H, Yin-Hu W, Tsutomu N. Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresour. Technol. 2011;102:7627-7632. https://doi.org/10.1016/j.biortech.2011.05.009
  26. Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010;101:5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  27. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 2010;101:58-64. https://doi.org/10.1016/j.biortech.2009.02.076
  28. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 2009;48:1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  29. Khanh N, Kitaya Y, Xiao L, Endo R, Shibuya T. Selection of microalgae suitable for culturing with digestate from methane fermentation. Environ. Technol. 2013;34:2039-2045. https://doi.org/10.1080/09593330.2013.828093
  30. Azov Y, Goldman JC. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 1982;43:735-739. https://doi.org/10.1128/AEM.43.4.735-739.1982
  31. Chen R, Li R, Deitz L, Liu Y, Stevenson RJ, Liao W. Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass Bioenerg. 2012;39:128-138. https://doi.org/10.1016/j.biombioe.2011.12.045
  32. Crofts AR. Amine uncoupling of energy transfer in chloroplasts. I. Relation to ammonium ion uptake. J. Biol. Chem. 1967;242:3352-3359. https://doi.org/10.1016/S0021-9258(18)95916-8
  33. Ohmori M, Ohmori K, Strotmann H. Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Arch. Microbiol. 1977;114:225-229. https://doi.org/10.1007/BF00446866
  34. Zhu L, Wang Z, Takala J, et al. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour. Technol. 2013;137:318-325. https://doi.org/10.1016/j.biortech.2013.03.144
  35. Wang H, Xiong H, Hui Z, Zeng X. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour. Technol. 2012;104:215-220. https://doi.org/10.1016/j.biortech.2011.11.020
  36. Kim J, Cho JH, Noh KH, Nam G, Hwang S. Effect of high free ammonia concentration on microalgal growth and substrate uptake. J. Korean Soc. Water Wastewater 2016;30:715-723. https://doi.org/10.11001/jksww.2016.30.6.715
  37. Halling-Sorensen B, Jorgensen SE. The removal of nitrogen compounds from wastewater. Amsterdam: Elsevier Science;1993.
  38. Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FA. Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies. Bioresour. Technol. 2007;98:874-880. https://doi.org/10.1016/j.biortech.2006.03.003
  39. Bonmati A, Flotats X. Air stripping of ammonia from pig slurry:Characterisation and feasibility as a pre-or post-treatment to mesophilic anaerobic digestion. Waste Manage. 2003;23:261-272. https://doi.org/10.1016/S0956-053X(02)00144-7
  40. Cheng H, Tian G, Liu J. Enhancement of biomass productivity and nutrients removal from pretreated piggery wastewater by mixotrophic cultivation of Desmodesmus sp. CHX1. Desalin. Water Treat. 2013;51:7004-7011. https://doi.org/10.1080/19443994.2013.769917
  41. Moheimani NR, McHenry MP, de Boer K, Bahri P, eds. Biomass and biofuels from microalgae. In: Biofuel biorefinery technologies. Springer International Publishing; 2015.
  42. Depraetere O, Foubert I, Muylaert K. Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresour. Technol. 2013;148:366-372. https://doi.org/10.1016/j.biortech.2013.08.165
  43. Markou G, Chatzipavlidis I, Georgakakis D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour. Technol. 2012;112:234-241. https://doi.org/10.1016/j.biortech.2012.02.098
  44. Qin L, Shu Q, Wang Z, et al. Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl. Biochem. Biotechnol. 2014;172:1121-1130. https://doi.org/10.1007/s12010-013-0576-5
  45. Dahmani S, Zerrouki D, Ramanna L, Rawat I, Bux F. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour. Technol. 2016;219:749-752. https://doi.org/10.1016/j.biortech.2016.08.019
  46. Choi H. Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (MMBR). Appl. Biochem. Biotechnol. 2015;175:2195-2205. https://doi.org/10.1007/s12010-014-1365-5
  47. Mujtaba G, Lee K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res. 2017;120:174-184. https://doi.org/10.1016/j.watres.2017.04.078
  48. Amaral P, Fernandes D, Tavares A, et al. Decolorization of dyes from textile wastewater by trametes versicolor. Environ. Technol. 2004;25:1313-1320. https://doi.org/10.1080/09593332508618376
  49. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation. Standard methods for the examination of water and wastewater. American Public Health Association;2005.
  50. Tam N, Wong Y. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 1996;57:45-50. https://doi.org/10.1016/0960-8524(96)00045-4
  51. Markou G, Georgakakis D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters:A review. Appl. Energ. 2011;88:3389-3401. https://doi.org/10.1016/j.apenergy.2010.12.042
  52. Martin C, De la Noue J, Picard G. Intensive cultivation of freshwater microalgae on aerated pig manure. Biomass 1985;7:245-259. https://doi.org/10.1016/0144-4565(85)90064-2
  53. Pressley TA, Bishop DF, Roan SG. Ammonia-nitrogen removal by breakpoint chlorination. Environ. Sci. Technol. 1972;6:622-628. https://doi.org/10.1021/es60066a006
  54. Liang Y, Hong HC, Dong LH, Lan CY, Han BP, Wong MH. Sources and properties of natural organic matter (NOM) in water along the Dongjiang River (the source of Hong Kong's drinking water) and toxicological assay of its chlorination by-products. Arch. Environ. Contam. Toxicol. 2008;54:597-605. https://doi.org/10.1007/s00244-007-9069-2
  55. Yang M, Liu J, Zhang X, Richardson SD. Comparative toxicity of chlorinated saline and freshwater wastewater effluents to marine organisms. Environ. Sci. Technol. 2015;49:14475-14483. https://doi.org/10.1021/acs.est.5b03796
  56. Martinez ME, Camacho F, Jimenez J, Espinola J. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem. 1997;32:93-98. https://doi.org/10.1016/S0032-9592(96)00045-3
  57. Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA. Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng. Life Sci. 2014;14:47-56. https://doi.org/10.1002/elsc.201200219
  58. Yan C, Zhang L, Luo X, Zheng Z. Effects of various LED light wavelengths and intensities on the performance of purifying synthetic domestic sewage by microalgae at different influent C/N ratios. Ecol. Eng. 2013;51:24-32. https://doi.org/10.1016/j.ecoleng.2012.12.051
  59. Li C, Yu Y, Zhang D, Liu J, Ren N, Feng Y. Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture. J. Chem. Technol. Biotechnol. 2016;91:680-684. https://doi.org/10.1002/jctb.4623
  60. Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  61. Zeng Z, Zheng P, Ding A, Zhang M, Abbas G, Li W. Source analysis of organic matter in swine wastewater after anaerobic digestion with EEM-PARAFAC. Environ. Sci. Pollut. Res. 2017;24:6770-6778. https://doi.org/10.1007/s11356-016-8324-3
  62. Redfield AC. The biological control of chemical factors in the environment. Am. Sci. 1958;46:230A-221.
  63. Lalucat J, Imperial J, Pares R. Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnol. Bioeng. 1984;26:677-681. https://doi.org/10.1002/bit.260260707
  64. Kumar MS, Miao ZH, Wyatt SK. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour. Technol. 2010;101:6012-6018. https://doi.org/10.1016/j.biortech.2010.02.080
  65. ROK MOE: Enforcement decree of the water quality and aquatic ecosystem conservation act [Internet]. Republic of Korea Ministry of Environment [cited 16 May 2018]. Available from:http://www.law.go.kr/LSW/flDownload.do?flSeq=36219185&flNm=%5B%EB%B3%84%ED%91%9C+13%5D+%EC%88%98%EC%A7%88%EC%98%A4%EC%97%BC%EB%AC%BC%EC%A7%88%EC%9D%98+%EB%B0%B0%EC%B6%9C%ED%97%88%EC%9A%A9%EA%B8%B0%EC%A4%80%28%EC%A0%9C34%EC%A1%B0+%EA%B4%80%EB%A0%A8%29%0A.
  66. Gao F, Yang Z, Li C, Wang YJ, Jin WH, Deng YB. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresour. Technol. 2014;167:441-446. https://doi.org/10.1016/j.biortech.2014.06.042
  67. Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J. Microalgal cultivation in wastewater from the fermentation effluent in riboflavin (B2) manufacturing for biodiesel production. Bioresour. Technol. 2013;143:499-504. https://doi.org/10.1016/j.biortech.2013.06.044
  68. Farooq W, Lee Y, Ryu B, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol. 2013;132:230-238. https://doi.org/10.1016/j.biortech.2013.01.034
  69. Wilkie AC, Mulbry WW. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 2002;84:81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
  70. Cho S, Lee N, Park S, et al. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour. Technol. 2013;131:515-520. https://doi.org/10.1016/j.biortech.2012.12.176
  71. Gonzalez LE, Canizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 1997;60:259-262. https://doi.org/10.1016/S0960-8524(97)00029-1
  72. Zhu L, Hiltunen E, Shu Q, Zhou W, Li Z, Wang Z. Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid. Appl. Energ. 2014;128:103-110. https://doi.org/10.1016/j.apenergy.2014.04.039
  73. De-Bashan LE, Moreno M, Hernandez J, Bashan Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 2002;36:2941-2948. https://doi.org/10.1016/S0043-1354(01)00522-X
  74. Martinez M, Sanchez S, Jimenez J, El Yousfi F, Munoz L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2000;73:263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  75. Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol. 2013;25:1529-1537. https://doi.org/10.1007/s10811-013-9982-x
  76. Qin L, Wang Z, Sun Y, et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ. Sci. Pollut. Res. 2016;23:8379-8387. https://doi.org/10.1007/s11356-015-6004-3
  77. Su Y, Mennerich A, Urban B. Coupled nutrient removal and biomass production with mixed algal culture: Impact of biotic and abiotic factors. Bioresour. Technol. 2012;118:469-476. https://doi.org/10.1016/j.biortech.2012.05.093
  78. Kim H, Choi WJ, Chae AN, Park J, Kim HJ, Song KG. Evaluating integrated strategies for robust treatment of high saline piggery wastewater. Water Res. 2016;89:222-231. https://doi.org/10.1016/j.watres.2015.11.054
  79. Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab. Brain Dis. 2009;24:95-102. https://doi.org/10.1007/s11011-008-9112-7
  80. Gallert C, Bauer S, Winter J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl. Microbiol. Biotechnol. 1998;50:495-501. https://doi.org/10.1007/s002530051326
  81. Rajagopal R, Masse DI, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013;143:632-641. https://doi.org/10.1016/j.biortech.2013.06.030
  82. Smolders AJP, den Hartog C, van Gestel CBL, Roelofs JGM. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquat. Bot. 1996;53:85-96. https://doi.org/10.1016/0304-3770(95)01014-9
  83. Wang H, Hu Z, Xiao B, Cheng Q, Li F. Ammonium nitrogen removal in batch cultures treating digested piggery wastewater with microalgae Oedogonium sp. Water Sci. Technol. 2013;68:269-275. https://doi.org/10.2166/wst.2013.230

피인용 문헌

  1. Nutrient removal and carbohydrate production potential of indigenous Scenedesmus sp. grown in anaerobically digested brewery wastewater vol.9, pp.1, 2020, https://doi.org/10.1186/s40068-020-00201-5
  2. Phycoremediation of Sewage-Contaminated Lake Water Using Microalgae-Bacteria Co-Culture vol.231, pp.6, 2020, https://doi.org/10.1007/s11270-020-04652-5
  3. Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater vol.13, pp.18, 2020, https://doi.org/10.3390/en13184895
  4. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review vol.24, pp.2, 2020, https://doi.org/10.2478/rtuect-2020-0067
  5. Assessment of Chlorella sorokiniana Growth in Anaerobic Digester Effluent vol.10, pp.3, 2020, https://doi.org/10.3390/plants10030478
  6. Nutrients recycling and biomass production from Chlorella pyrenoidosa culture using anaerobic food processing wastewater in a pilot-scale tubular photobioreactor vol.270, 2020, https://doi.org/10.1016/j.chemosphere.2020.129459
  7. The Effect of Exogenous Oxytetracycline on High-Temperature Anaerobic Digestion of Elements in Swine Wastewater vol.13, pp.24, 2021, https://doi.org/10.3390/w13243497
  8. A Comparative Study of the Growth and Nutrient Removal Effects of Five Green Microalgae in Simulated Domestic Sewage vol.13, pp.24, 2021, https://doi.org/10.3390/w13243613
  9. Swine wastewater treatment in high rate algal ponds: Effects of Cu and Zn on nutrient removal, productivity and biomass composition vol.299, 2021, https://doi.org/10.1016/j.jenvman.2021.113668