DOI QR코드

DOI QR Code

Sorption of chlorophenols on geotextile of the geosynthetic clay liners

  • Ahari, M'hamed (Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and techniques, Abdelmalek Essaadi University) ;
  • Touze-Foltz, Nathalie (National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), HBAN research unit) ;
  • Mazeas, Laurent (National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), HBAN research unit)
  • 투고 : 2019.01.02
  • 심사 : 2019.02.25
  • 발행 : 2020.04.30

초록

Knowledge of organic micropollutant transfers in barrier seal materials from waste storage facilities is limited to volatile organic compounds and phenolic compounds at ambient temperature. This study focused on the sorption of chlorophenols (CPs) from various geotextiles from clay geosynthetics under the influence of temperature. Also to study the impact of the polarity or the amount of CPs adsorbed on geotextiles with the partition coefficient. The effect of various parameters such as contact time, effect of temperature, initial CPs concentration and adsorbent dosage has been carried out in this study. The result obtained is non-linear and the data was calculated for affinity with Freundlich isotherm model. An important observation is that the amount of CPs sorbed on geotextiles increases with a growing number of chlorine atoms, ie increases with the partition coefficient (log Kow). During this study, a decrease in adsorbent properties was observed with the rise in temperature from 23℃ to 55℃. The partitioning coefficients for CPs examined range are from 2.4 (R2 = 0.86) to 8.4 mL/g (R2 = 0.90). Among the CPs studied, the highest adsorbed quantity was observed for pentachlorophenol with 0.052 g/g at 23℃, this quantity will decrease with the increase in temperature.

키워드

참고문헌

  1. Khan Z, Anjaneyulub Y. Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites. J. Hazard. Mater. 2005;118:161-169. https://doi.org/10.1016/j.jhazmat.2004.10.010
  2. Fishbein L. An overview of environmental and toxicological aspects of aromatic hydrocarbons. II. Toluene. Sci. Total Environ. 1985;42:267-288. https://doi.org/10.1016/0048-9697(85)90062-2
  3. Merain E, Zander M, Volatile aromatics. In: Hutzinger O, eds. The hand book of environmental chemistry. Part B. Anthropogenic Compounds, vol. 3. New York: Springer-Verlag;1982. p. 89-116 & 117-161.
  4. Choi JS, Koduru JR, Lingamdinne LP, Yang JK, Chang YY. Effective adsorptive removal of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by pseudographitic carbon:Kinetics, equilibrium and thermodynamics. Environ. Chem. 2018;15:100-112. https://doi.org/10.1071/EN17208
  5. Wang G, Zhang S, Hua Y et al. Phenol and/or $Zn^{2+}$ adsorption by single- or dual-cation organomontmorillonites. Appl. Clay Sci. 2017;140:1-9. https://doi.org/10.1016/j.clay.2017.01.023
  6. Koduru JR, Lingamdinne LP, Singh J, Choo KH. Effective removal of bisphenol A (BPA) from waterusing a goethite/activated carbon composite. Process Saf. Environ. 2016;103:87-96. https://doi.org/10.1016/j.psep.2016.06.038
  7. Park HS, Koduru JR, Choo KH, Lee B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 2015;286:315-324. https://doi.org/10.1016/j.jhazmat.2014.11.012
  8. Ucar S, Evcin A, Ucar M, Alibeyli R, Majdan M. Removal of phenol and chlorophenols from aquatic system using activated clinoptilolite. Hacettepe J. Biol. Chem. 2015;43:235-249.
  9. Bayramoglu G, Arica MY. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads. J. Hazard. Mater. 2008;156:148-155. https://doi.org/10.1016/j.jhazmat.2007.12.008
  10. Lin SH, Juang RS. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents:A review. J. Environ. Manage. 2009;90:1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
  11. Denizli A, Ozkan G, Ucar M. Removal of chlorophenols from aquatic systems with dye-affinity microbeads. Sep. Purif. Technol. 2001;24:255-262. https://doi.org/10.1016/S1383-5866(01)00129-0
  12. Tang D, Zheng Z, Lin K, Luan J, Zhang J. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. J. Hazard. Mater. 2007;143:49-56. https://doi.org/10.1016/j.jhazmat.2006.08.066
  13. Asplund G, Grimvall A. Organohalogens in nature. Environ. Sci. Technol. 1991;25:1346-1350. https://doi.org/10.1021/es00020a001
  14. Grimvall A, Laniewski K, Boren H, Jonsson S, Kaugare S. Organohalogens of natural or unknown origin in surface water and precipitation. Toxicol. Environ. Chem. 1994;46:183-190. https://doi.org/10.1080/02772249409358111
  15. Fan HT, Zhao CY, Liu S, Shen H. Adsorption characteristics of chlorophenols from aqueous solution onto graphene. J. Chem. Eng. Data 2017;62:1099-1105. https://doi.org/10.1021/acs.jced.6b00918
  16. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M. Adsorption of phenolic compounds by activated carbona critical review. Chemosphere 2005;58:1049-1070. https://doi.org/10.1016/j.chemosphere.2004.09.067
  17. Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 2004;322:21-39. https://doi.org/10.1016/j.scitotenv.2003.09.015
  18. Estevinho BN, Ratola N, Alves A, Santos L. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J. Hazard. Mater. 2006;137:1175-1181. https://doi.org/10.1016/j.jhazmat.2006.04.001
  19. Cha DK, Song JS, Sarr D, Kim BJ. Hazardous waste treatment technologies. Water Environ. Res. 1996;4:575-586.
  20. Baciocchi R, Boni MR, Lavecchia R. Modeling of chlorophenols competitive adsorption on soils by means of the ideal adsorbed solution theory. J. Hazard. Mater. 2005;118:239-246. https://doi.org/10.1016/j.jhazmat.2004.11.010
  21. Woods JS, Polissar L, Severson RK. Soft tissue sarcoma and non-Hodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure in western Washington. J. Nat. Cancer Inst. 1987;78:899-910.
  22. Hoar SK, Blair A, Holmes FF. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA 1986;256:1141-1147. https://doi.org/10.1001/jama.1986.03380090081023
  23. Eriksson M, Hardell L, Berg N, Moller T, Axelson O. Soft-tissue sarcoma and exposure to chemical substances: A casereference study. Br. J. Ind. Med. 1981;38:27-33.
  24. Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005;39:6881-6895. https://doi.org/10.1021/es050191b
  25. Naseem R, Tahir SS. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 2001;35:3982-3986. https://doi.org/10.1016/S0043-1354(01)00130-0
  26. Tahir H, Uzma H, Sultan M, Jahanzeb Q. Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr. J. Biotechnol. 2010;9:8206-8214. https://doi.org/10.5897/AJB10.911
  27. Touze-Foltz N, Lupo J, Barroso M. Geoenvironmental applications of geosynthetics. In: Proceedings of the EuroGeo 4, the Fourth European Geosynthetics Conference; 7-10 September 2008; Edinburgh, United Kingdom.
  28. Acikel AS, Singh RM, Bouazza A, Gates WP, Rowe RK. Applicability and accuracy of the initially dry and initially wet contact filter paper tests for matric suction measurement of geosynthetic clay liners. Geotechnique 2015;65:780-787. https://doi.org/10.1680/geot.13.P.222
  29. Bannour H, Touze-Foltz N. Flow-rate measurements in meter-size multicomponent geosynthetic clay liners. Geosynth. Int. 2015;22:70-77. https://doi.org/10.1680/gein.14.00032
  30. Brachman RWI, Rentz A, Rowe RK, Take WA. Classification and quantification of downslope erosion from a geosynthetic clay liner (GCL) when covered only by a black geomembrane. Can. Geotech. J. 2015;52:395-412. https://doi.org/10.1139/cgj-2014-0241
  31. Liu Y, Bouazza A, Gates WP, Rowe RK. Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions. Geotext. Geomembr. 2015;43:14-23. https://doi.org/10.1016/j.geotexmem.2014.11.004
  32. Puma S, Dominijanni A, Manassero M, Zaninetta L. The role of physical pretreatments on the hydraulic conductivity of natural sodium bentonites. Geotext. Geomembr. 2015;43:263-271. https://doi.org/10.1016/j.geotexmem.2015.02.001
  33. Saheli PT, Rowe RK. Sorption and diffusion of bisphenol-A (BPA) through a geosynthetic clay liner (GCL). Geotext. Geomembr. 2016;44:731-738. https://doi.org/10.1016/j.geotexmem.2016.06.003
  34. Banat FA, AI-Bashir B, AI-Asheh S, Hayajneh O. Adsorption of phenol by bentonite. Environ. Pollut. 2000;107:391-398. https://doi.org/10.1016/S0269-7491(99)00173-6
  35. Koh SM, Dixon B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci. 2001;18:111-122. https://doi.org/10.1016/S0169-1317(00)00040-5
  36. Lawrence MAM, Kukkadapu RK, Boyd SA. Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium-and tetramethylphosphonium-exchanged, montmorillonite. Appl. Clay Sci. 1998;13:13-20. https://doi.org/10.1016/S0169-1317(98)00009-X
  37. Ahari M, Touze-Foltz N, Mazeas L, Guenne A. Quantification of the adsorption of phenolic compounds on the geotextile and bentonite components of four geosynthetic clay liners. Geosynth. Int. 2011;18:322-331. https://doi.org/10.1680/gein.2011.18.5.322
  38. Touze-Foltz N, Ahari M, Mendes M, Barral C, Gardoni M, Mazeas L. Diffusion of phenolic compounds through an HDPE geomembrane. Geotech. Eng. 2012;43:19-29.
  39. Rowe RK, Mukunoki T, Sangam HP. BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. ASCE J. Geotech. Geoenviron. Eng. 2005;131:1211-1221. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1211)
  40. Limam I, Guenne A, Driss M, Mazeas L. Simultaneous determination of phenol, methylphenols, chlorophenols and bisphenol-A by headspace solid-phase microextraction-gas chromatography-mass spectrometry in water samples and industrial effluents. Int. J. Environ. Anal. Chem. 2010;90:230-244. https://doi.org/10.1080/03067310903267307
  41. Ganne A, Touze-Foltz N, Mazeas L, Guenne A, Epissard J. Experimental determination of sorption and diffusion of organic pollutants through GCLs. In: Proceedings of the EuroGeo 4, the Fourth European Geosynthetics Conference; 7-10 September 2008; Edinburgh, United Kingdom.
  42. Hameed BH. Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. Colloid. Surf. A. Physicochem. Eng. Asp. 2007;307:45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
  43. Zheng H, Wang Y, Zheng Y, Zhang H, Liang S, Long M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 2008;143:117-123. https://doi.org/10.1016/j.cej.2007.12.022
  44. Bilgili MS. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: isotherm, kinetic, and thermodynamic analysis. J. Hazard. Mater. 2006;137:157-164. https://doi.org/10.1016/j.jhazmat.2006.01.005
  45. Dekany I, Szanto E, Nagy LG. Sorption and immersional wetting on clay minerals having modified surface. Part I. Surface properties of nonswelling clay mineral organocomplexes. J. Colloid Interface Sci. 1985;103:321-331. https://doi.org/10.1016/0021-9797(85)90110-9
  46. Dekany I, Szanto F, Nagy LG. Sorption and immersional wetting on clay minerals having modified surface. Part II. Interlamellar sorption and wetting on organic montmorillonites. J. Colloid Interface Sci. 1986;109:376-384. https://doi.org/10.1016/0021-9797(86)90316-4
  47. Dekany I, Szanto F, Weiss A, Lagaly G. Interactions of hydrophobic layer silicates with alcohol-benzene mixtures I. Adsorption isotherms. Ber. Bunsenges. Phys. Chem. 1986;90:422-427. https://doi.org/10.1002/bbpc.19860900507
  48. Dekany I, Szanto F, Weiss A, Lagaly G. Interactions of hydrophobic layer silicates with alcohol-benzene mixtures II. Structure and composition of the adsorption layer. Ber. Bunsenges. Phys. Chem. 1986;90:427-431. https://doi.org/10.1002/bbpc.19860900508
  49. Park Y, Ayoko GA, Horvath E, Kurdi R, Kristof J, Frost RL. Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. J. Colloid Interface Sci. 2013;393:319-334. https://doi.org/10.1016/j.jcis.2012.10.067
  50. Park Y, Sun Z, Ayoko AG, Frosta RL. Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water. Chemosphere 2014;107:249-256. https://doi.org/10.1016/j.chemosphere.2013.12.050
  51. Nagasaki S, Nakagawa Y, Tanaka S. Sorption of nonylphenol on Na-Montmorillonite. Colloid. Surf. A. Physicochem. Eng. Asp. 2004;230:131-139. https://doi.org/10.1016/j.colsurfa.2003.09.026

피인용 문헌

  1. Progress in bioremediation of pesticide residues in the environment vol.26, pp.6, 2020, https://doi.org/10.4491/eer.2020.446