DOI QR코드

DOI QR Code

Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights

  • 투고 : 2018.11.14
  • 심사 : 2019.03.03
  • 발행 : 2020.04.30

초록

Pillared clays with Zr and Fe/Cu/Zr polycations have been prepared from natural clays found in large deposits of Kazakhstan and assessed as catalysts for the catalytic wet peroxide oxidation (CWPO), using 4-nitrophenol (4-NP) as model compound. The performance of the catalysts was followed by measuring the concentration of 4-NP, H2O2 and the total organic carbon (TOC), considering C4-NP = 5 g L-1, $C_{H_2O_2}$ = 17.8 g L-1, Ccat = 2.5 g L-1, initial pH = 3.0 and T = 50℃. At those selected conditions, the pillared clays showed higher activity than natural clays in the CWPO of 4-NP. The conversion of the model pollutant was complete when Fe/Cu/Zr-PILCs were used, with the TOC removal reaching 78.4% after 24 h with the best Fe/Cu/Zr-PILC. The H2O2, 4-NP and TOC time-evolution was well described by a kinetic model based on TOC lumps in three blocks, considering the initial TOC (corresponding to 4-NP), the production of oxidizable intermediates and the formation of refractory products.

키워드

참고문헌

  1. Shibutov M. Industry report: Water management in Kazakhstan. In: Switzerland Global Enterprise. 2017.
  2. Martin-Martinez M, Ribeiro RS, Machado BF, et al. Role of nitrogen doping on the performance of carbon nanotube catalysts:A catalytic wet peroxide oxidation application. ChemCatChem 2016;8:2068-2078. https://doi.org/10.1002/cctc.201600123
  3. Azabou S, Najjar W, Bouaziz M, Ghorbel A, Sayadi S. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques. J. Hazard. Mater. 2010;183:62-69. https://doi.org/10.1016/j.jhazmat.2010.06.104
  4. Molina CB, Casas JA, Zazo JA, Rodriguez JJ. A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem. Eng. J. 2006;118:29-35. https://doi.org/10.1016/j.cej.2006.01.007
  5. Diaz de Tuesta JL, Garcia-Figueruelo C, Quintanilla A, Casas JA, Rodriguez JJ. Application of high-temperature Fenton oxidation for the treatment of sulfonation plant wastewater. J. Chem. Technol. Biotechnol. 2015;90:1839-1846. https://doi.org/10.1002/jctb.4494
  6. Catrinescu C, Arsene D, Teodosiu C. Catalytic wet hydrogen peroxide oxidation of para-chlorophenol over Al/Fe pillared clays (AlFePILCs) prepared from different host clays. Appl. Catal. B 2011;101:451-460. https://doi.org/10.1016/j.apcatb.2010.10.015
  7. Mojovic Z, Bankovic P, Milutinovic-Nikolic A, Dostanic J, Jovic-Jovicic N, Jovanovic D. Al,Cu-pillared clays as catalysts in environmental protection. Chem. Eng. J. 2009;154:149-155. https://doi.org/10.1016/j.cej.2009.05.004
  8. Galeano LA, Vicente MA, Gil A. Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn). Catal. Rev. 2014;56:239-287. https://doi.org/10.1080/01614940.2014.904182
  9. Cool P, Vansant EF. Pillared clays: Preparation, characterization and applications. Synthesis Springer. Berlin: Springer; 2001. p. 265-288.
  10. Gil A, Korili SA, Trujillano R, Vicente MA eds. Pillared clays and related catalysts. 1st ed. New York: Springer-Verlag; 2010.
  11. Chirchi L, Ghorbel A. Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by $H_2O_2$. Appl. Clay Sci. 2002;21:271-276. https://doi.org/10.1016/S0169-1317(02)00088-1
  12. Ayodele OB, Hameed BH. Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. J. Ind. Eng. Chem. 2013;19:966-974. https://doi.org/10.1016/j.jiec.2012.11.018
  13. Minz S, Garg S, Gupta R. Catalytic wet peroxide oxidation of 4-nitrophenol over Al-Fe, Al-Cu and Al-Cu-Fe pillared clays. Indian Chem. Eng. 2017;60:16-36. https://doi.org/10.1080/00194506.2016.1270780
  14. Minz S, Garg S, Gupta R. Catalytic wet peroxide oxidation of 4-nitrophenol over Al-Fe PILC: Kinetic study using Fermi's equation and mechanistic pathways based on TOC reduction. Chem. Eng. Commun. 2018;205:667-679. https://doi.org/10.1080/00986445.2017.1412310
  15. Zhang W, Xiao X, An T, et al. Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/$H_2O_2$ process. J. Chem. Technol. Biotechnol. 2003;78:788-794. https://doi.org/10.1002/jctb.864
  16. Ribeiro RS, Silva AMT, Pastrana-Martinez LM, Figueiredo JL, Faria JL, Gomes HT. Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions. Catal. Today 2015;249:204-212. https://doi.org/10.1016/j.cattod.2014.10.004
  17. Ribeiro RS, Silva AMT, Figueiredo JL, Faria JL, Gomes HT. The role of cobalt in bimetallic iron-cobalt magnetic carbon xerogels developed for catalytic wet peroxide oxidation. Catal. Today 2017;296:66-75. https://doi.org/10.1016/j.cattod.2017.06.023
  18. Diaz de Tuesta JL, Quintanilla A, Casas JA, Rodriguez JJ. Kinetic modeling of wet peroxide oxidation with a carbon black catalyst. Appl. Catal. B 2017;209:701-710. https://doi.org/10.1016/j.apcatb.2017.03.031
  19. Agency for toxic substances and diseases registry. Toxicologal profiles for nitrophenols: 2-nitrophenol, 4-nitrophenol. In:P.H.S. U.S. Dept. of Health & Human Services, Agency for Toxic Substances and Diseases Registry; 1992. p. 1-104.
  20. U.S. Environmental Protection Agency. Nitrophenols-Ambient water quality criteria. 1980. p. A1-C134.
  21. Newcombe G, Hayes R, Drikas M. Granular activated carbon:Importance of surface properties in the adsorption of naturally occurring organics. Colloids Surf. A 1993;78:65-71. https://doi.org/10.1016/0927-7757(93)80311-2
  22. Diaz de Tuesta JL, Quintanilla A, Casas JA, Rodriguez JJ. P-, B- and N-doped carbon black for the catalytic wet peroxide oxidation of phenol: Activity, stability and kinetic studies. Catal. Commun. 2017;102:131-135. https://doi.org/10.1016/j.catcom.2017.09.012
  23. Pinho MT, Silva AMT, Fathy NA, Attia AA, Gomes HT, Faria JL. Activated carbon xerogel-chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. J. Environ. Chem. Eng. 2015;3:1243-1251. https://doi.org/10.1016/j.jece.2014.10.020
  24. Gomes HT, Figueiredo JL, Faria JL. Catalytic wet air oxidation of olive mill wastewater. Catal. Today 2007;124:254-259. https://doi.org/10.1016/j.cattod.2007.03.043
  25. Ribeiro RS, Rodrigues RO, Silva AMT, et al. Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste. Appl. Catal. B 2017;219:645-657. https://doi.org/10.1016/j.apcatb.2017.08.013
  26. Fatimah I. Preparation of $ZrO_2$/$Al_2O_3$-montmorillonite composite as catalyst for phenol hydroxylation. J. Adv. Res. 2014;5:663-670. https://doi.org/10.1016/j.jare.2013.10.003
  27. Bruckman VJ, Wriessnig K. Improved soil carbonate determination by FT-IR and X-ray analysis. Environ. Chem. Lett. 2013;11:65-70. https://doi.org/10.1007/s10311-012-0380-4
  28. Djeffal L, Abderrahmane S, Benzina M, Fourmentin M, Siffert S, Fourmentin S. Efficient degradation of phenol using natural clay as heterogeneous Fenton-like catalyst. Environ. Sci. Pollut. Res. Int. 2014;21:3331-3338. https://doi.org/10.1007/s11356-013-2278-5
  29. Munoz HJ, Blanco C, Gil A, Vicente MA, Galeano LA. Preparation of Al/Fe-pillared clays: Effect of the starting mineral. Materials 2017;10:1-18. https://doi.org/10.3390/ma10010001
  30. Carriazo JG, Guelou E, Barrault J, Tatibouet JM, Moreno S. Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Appl. Clay Sci. 2003;22:303-308. https://doi.org/10.1016/S0169-1317(03)00124-8
  31. Galeano LA, Gil A, Vicente MA. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Appl. Catal. B 2010;100:271-281. https://doi.org/10.1016/j.apcatb.2010.08.003
  32. Khankhasaeva ST, Dashinamzhilova ET, Dambueva DV, Timofeeva MN. Catalytic properties of Fe-Cu-Al-montmorillonites in the oxidation of acid chrome dark blue azo dye. Kinet. Catal. 2013;54:307-313. https://doi.org/10.1134/S0023158413030063
  33. Zhou S, Zhang C, Hu X, et al. Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: Sensitivity, kinetics and mechanism. Appl. Clay Sci. 2014;95:275-283. https://doi.org/10.1016/j.clay.2014.04.024
  34. Jia F, Su J, Song S. Can natural muscovite be expanded? Colloids Surf. A 2015;471:19-25. https://doi.org/10.1016/j.colsurfa.2015.02.009
  35. Bohor BF, Randall EH. Scanning electron microscopy of clays and clay minerals. Clays Clay Miner. 1971;19:49-54. https://doi.org/10.1346/CCMN.1971.0190105
  36. Wan D, Wang G-H, Li W-B, Chen K, Shu G. Synthesis of Fe-Al pillared bentonite and heterogeneous Fenton degradation of orange. Acta Physico-Chimica Sinica 2013;29:2429-2436. https://doi.org/10.3866/PKU.WHXB201310084
  37. Li W, Wan D, Wang G, Chen K, Hu Q, Lu L. Heterogeneous Fenton degradation of Orange II by immobilization of $Fe_2O_3$ nanoparticles onto Al-Fe pillared bentonite. Korean J. Chem. Eng. 2016;33:1557-1564. https://doi.org/10.1007/s11814-016-0005-x
  38. Tomul F. Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites. J. Nanomater. 2012;2012:1-14. https://doi.org/10.1155/2012/237853
  39. Tomul F, Turgut Basoglu F, Canbay H. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution. Appl. Surf. Sci. 2016;360:579-593. https://doi.org/10.1016/j.apsusc.2015.10.228
  40. Tomul F. The effect of ultrasonic treatment on iron-chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol. Appl. Clay Sci. 2016;120:121-134. https://doi.org/10.1016/j.clay.2015.11.007
  41. Xue B, Guo H, Liu L, Chen M. Preparation, characterization and catalytic properties of yttrium-zirconium-pillared montmorillonite and their application in supported Ce catalysts. Clay Miner. 2018;50:211-219. https://doi.org/10.1180/claymin.2015.050.2.05
  42. Mnasri-Ghnimi S, Frini-Srasra N. Effect of temperature synthesis on the catalytic performance of zirconium pillared interlayered clays for phenol oxidation. Modern Chem. Applic. 2017;5:1-9. https://doi.org/10.11648/j.mc.20170501.11

피인용 문헌

  1. Wet Peroxide Oxidation of Paracetamol Using Acid Activated and Fe/Co-Pillared Clay Catalysts Prepared from Natural Clays vol.9, pp.9, 2020, https://doi.org/10.3390/catal9090705
  2. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications vol.18, pp.1, 2020, https://doi.org/10.1515/chem-2020-0159
  3. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications vol.18, pp.1, 2020, https://doi.org/10.1515/chem-2020-0159
  4. Effect of Zr Impregnation on Clay-Based Materials for H2O2-Assisted Photocatalytic Wet Oxidation of Winery Wastewater vol.12, pp.12, 2020, https://doi.org/10.3390/w12123387
  5. Copper nickel co-impregnation of Moroccan yellow clay as promising catalysts for the catalytic wet peroxide oxidation of caffeine vol.7, pp.1, 2020, https://doi.org/10.1016/j.heliyon.2021.e06069
  6. Recent advances in the applications OF molybdenum sulphide heterostructures for water treatment technologies vol.30, 2021, https://doi.org/10.1016/j.flatc.2021.100307
  7. Influencing Factors in the Synthesis of Photoactive Nanocomposites of ZnO/SiO2-Porous Heterostructures from Montmorillonite and the Study for Methyl Violet Photodegradation vol.11, pp.12, 2020, https://doi.org/10.3390/nano11123427
  8. Catalytic wet peroxide oxidation of phenolic wastewater on novel Cu/Mn-UiO-66@Al2O3 ceramic tube membrane catalysts vol.430, pp.p1, 2020, https://doi.org/10.1016/j.cej.2021.132787