DOI QR코드

DOI QR Code

Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review

  • Received : 2018.12.02
  • Accepted : 2019.02.18
  • Published : 2020.02.28

Abstract

In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.

Keywords

References

  1. Demirbas A. Fuels from biomass. In: Biorefineries. Green energy and technology book series. London: Springer; 2010. p. 33-73.
  2. Energy, carbon saving and sustainability [Internet]. [cited 26 February 2018]. Available from: http://clients.junction-18.com/beep/Biomass/#/1.
  3. National Statistics. Agriculture in the United Kingdom [Internet]. [cited 15 March 2018]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/208436/auk-2012-25jun13.pdf.
  4. Yang J, Wang X, Ma H, Bai J, Jiang Y, Yu H. Potential usage, vertical value chain and challenge of biomass resource: Evidence from China's crop residues. Appl. Energ. 2014;114:717-723. https://doi.org/10.1016/j.apenergy.2013.10.019
  5. Report on the availability of biomass sources in Spain: Vineyards and olive groves [Internet]. [cited 7 May 2018]. Available from: https://www.researchgate.net/publication/321760198_Report_on_the_availability_of_Biomass_Sources_in_Spain_vineyards_and_olive_groves.
  6. Tan Z, Chen K, Liu P. Possibilities and challenges of China's forestry biomass resource utilization. Renew. Sust. Energ. Rev. 2015;41:368-378. https://doi.org/10.1016/j.rser.2014.08.059
  7. Vezzoli C, Ceschin F, Osanjo L, et al. Energy and sustainable development. In: Designing sustainable energy for all. Springer; 2018. p. 3-22.
  8. Aalto M, Korpinen O-J, Loukola J, Ranta T. Achieving a smooth flow of fuel deliveries by truck to an urban biomass power plant in Helsinki, Finland-An agent-based simulation approach. Int. J. Forest Eng. 2018;29:21-30. https://doi.org/10.1080/14942119.2018.1403809
  9. Lora ES, Andrade RV. Biomass as energy source in Brazil. Renew. Sust. Energ. Rev. 2009;13:777-788. https://doi.org/10.1016/j.rser.2007.12.004
  10. Ericsson K, Werner S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass Bioenerg. 2016;94:57-65. https://doi.org/10.1016/j.biombioe.2016.08.011
  11. Shafie SM, Mahlia TMI, Masjuki HH, Ahmad-Yazid A. A review on electricity generation based on biomass residue in Malaysia. Renew. Sust. Energ. Rev. 2012;16:5879-5889. https://doi.org/10.1016/j.rser.2012.06.031
  12. Mekhilef S, Saidur R, Safari A, Mustaffa WESB. Biomass energy in Malaysia: Current state and prospects. Renew. Sust. Energ. Rev. 2011;15:3360-3370. https://doi.org/10.1016/j.rser.2011.04.016
  13. Assanee N, Boonwan C. State of the art of biomass gasification power plants in Thailand. Energ. Procedia 2011;9:299-305. https://doi.org/10.1016/j.egypro.2011.09.032
  14. Darabant A, Haruthaithanasan M, Atkla W, Phudphong T, Thanavat E, Haruthaithanasan K. Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energ. Procedia 2014;59:134-141. https://doi.org/10.1016/j.egypro.2014.10.359
  15. Mirza UK, Ahmad N, Majeed T. An overview of biomass energy utilization in Pakistan. Renew. Sust. Energ. Rev. 2008;12:1988-1996. https://doi.org/10.1016/j.rser.2007.04.001
  16. Singh NB, Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective. Renew. Sust. Energ. Rev. 2014;39:65-78. https://doi.org/10.1016/j.rser.2014.07.110
  17. Cardoen D, Joshi P, Diels L, Sarma PM, Pant D. Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resour. Conserv. Recycl. 2015;101:143-153. https://doi.org/10.1016/j.resconrec.2015.06.002
  18. Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C. Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnerg. Res. 2015;9:1-14.
  19. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2014;5:337-353. https://doi.org/10.1007/s13205-014-0246-5
  20. Iqbal HMN, Ahmed I, Zia MA, Irfan M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 2011;2:149-156. https://doi.org/10.4236/abb.2011.23024
  21. Welker C, Balasubramanian V, Petti C, Rai K, DeBolt S, Mendu V. Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 2015;8:7654-7676. https://doi.org/10.3390/en8087654
  22. Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin T. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sust. Energ. Rev. 2012;16:5910-5923. https://doi.org/10.1016/j.rser.2012.05.039
  23. Das P, Ganesh A, Wangikar P. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenerg. 2004;27:445-457. https://doi.org/10.1016/j.biombioe.2004.04.002
  24. Raveendran K, Ganesh A, Khilar KC. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995;74:1812-1822. https://doi.org/10.1016/0016-2361(95)80013-8
  25. Bledzki AK, Mamun AA, Volk J. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Compos. Sci. Technol. 2010;70:840-846. https://doi.org/10.1016/j.compscitech.2010.01.022
  26. Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 1998;70-72:99-111. https://doi.org/10.1007/BF02920127
  27. Sciban M, Radetic B, Kevresan Z, Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007;98:402-409. https://doi.org/10.1016/j.biortech.2005.12.014
  28. Nishimura H, Tan L, Sun Z-Y, Tang Y-Q, Kida K, Morimura S. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation. Waste Manage. 2016;48:644-651. https://doi.org/10.1016/j.wasman.2015.11.051
  29. Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 2006;1:220-232. https://doi.org/10.15376/biores.1.2.220-232
  30. Kim SW, Koo BS, Ryu JW, et al. Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process. Technol. 2013;108:118-124. https://doi.org/10.1016/j.fuproc.2012.05.002
  31. Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol. 2006;76:230-237. https://doi.org/10.1016/j.jaap.2005.11.007
  32. Tsai W, Lee M, Chang Y. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007;98:22-28. https://doi.org/10.1016/j.biortech.2005.12.005
  33. Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 2007;78:265-271. https://doi.org/10.1016/j.jaap.2006.08.002
  34. Altafini CR, Wander PR, Barreto RM. Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energ. Convers. Manage. 2003;44:2763-2777. https://doi.org/10.1016/S0196-8904(03)00025-6
  35. Yu F, Deng S, Chen P, et al. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl. Biochem. Biotechnol. 2007;137-140:957-970. https://doi.org/10.1007/s12010-007-9111-x
  36. Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenerg. 2010;34:67-74. https://doi.org/10.1016/j.biombioe.2009.09.012
  37. Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008;87:844-856. https://doi.org/10.1016/j.fuel.2007.05.041
  38. Nurul Islam M, Nurul Islam M, Rafiqul Alam Beg M, Rofiqul Islam M. Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renew. Energ. 2005;30:413-420. https://doi.org/10.1016/j.renene.2004.05.002
  39. Minowa T, Kondo T, Sudirjo ST. Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenerg. 1998;14:517-524. https://doi.org/10.1016/S0961-9534(98)00006-3
  40. Sellin N, Oliveiraa BG, Marangonia C, Souzaa O, Oliveira APN, Oliveira TMN. Use of banana culture waste to produce briquettes. Italian Assoc. Chem. Eng. 2013;37:439-444.
  41. Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431-434. https://doi.org/10.1016/S0016-2361(97)85520-2
  42. Module 2: Heterogeneous catalysis. Lecture 18: Catalysts test and Reactors types [Internet]. [cited 11 February 2019]. Available from: https://nptel.ac.in/courses/103103026/module2/lec18/1.html.
  43. Vecino Mantilla S, Gauthier-Maradei P, Alvarez Gil P, Tarazona Cardenas S. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization. J. Anal. Appl. Pyrol. 2014;108:284-294. https://doi.org/10.1016/j.jaap.2014.04.003
  44. Sembiring KC, Rinaldi N, Simanungkalit SP. Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energ. Procedia 2015;65:162-169. https://doi.org/10.1016/j.egypro.2015.01.052
  45. Chan YH, Yusup S, Quitain AT, Uemura Y, Sasaki M. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluid. 2014;95:407-412. https://doi.org/10.1016/j.supflu.2014.10.014
  46. Montoya JI, Valdes C, Chejne F, et al. Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. J. Anal. Appl. Pyrol. 2015;112:379-387. https://doi.org/10.1016/j.jaap.2014.11.007
  47. Phan BMQ, Duong LT, Nguyen VD, et al. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass Bioenerg. 2014;62:74-81. https://doi.org/10.1016/j.biombioe.2014.01.012
  48. Mesa-Perez JM, Rocha JD, Barbosa-Cortez LA, Penedo-Medina M, Luengo CA, Cascarosa E. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Appl. Therm. Eng. 2013;56:167-175. https://doi.org/10.1016/j.applthermaleng.2013.03.017
  49. Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 2017;95:704-717. https://doi.org/10.1016/j.indcrop.2016.11.039
  50. Henkel C, Muley PD, Abdollahi KK, Marculescu C, Boldor D. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energ. Convers. Manage. 2016;109:175-183. https://doi.org/10.1016/j.enconman.2015.12.013
  51. Liu Y, Yuan X, Huang H, Wang X, Wang H, Zeng G. Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol-water). Fuel Process. Technol. 2013;112:93-99. https://doi.org/10.1016/j.fuproc.2013.03.005
  52. Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 2014;128:162-169. https://doi.org/10.1016/j.fuel.2014.02.074
  53. Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel Process. Technol. 2013;106:385-391. https://doi.org/10.1016/j.fuproc.2012.09.003
  54. Naqvi SR, Uemura Y, Yusup SB. Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst. J. Anal. Appl. Pyrol. 2014;106:57-62. https://doi.org/10.1016/j.jaap.2013.12.009
  55. Abu Bakar MS, Titiloye JO. Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 2013;103:362-368. https://doi.org/10.1016/j.jaap.2012.09.005
  56. Cai W, Liu R. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel 2016;182:677-686. https://doi.org/10.1016/j.fuel.2016.06.030
  57. Hsu C-P, Huang A-N, Kuo H-P. Analysis of the rice husk pyrolysis products from a fluidized bed reactor. Procedia Eng. 2015;102:1183-1186. https://doi.org/10.1016/j.proeng.2015.01.244
  58. Zhao N, Li B-X. The effect of sodium chloride on the pyrolysis of rice husk. Appl. Energ. 2016;178:346-352. https://doi.org/10.1016/j.apenergy.2016.06.082
  59. Rout T, Pradhan D, Singh RK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J. Environ. Chem. Eng. 2016;4:3696-3705. https://doi.org/10.1016/j.jece.2016.02.024
  60. Gao Y, Yang Y, Qin Z, Sun Y. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus 2016;5:333. https://doi.org/10.1186/s40064-016-1974-2
  61. Siengchum T, Isenberg M, Chuang SSC. Fast pyrolysis of coconut biomass - An FTIR study. Fuel 2013;105:559-565. https://doi.org/10.1016/j.fuel.2012.09.039
  62. Makibar J, Fernandez-Akarregi AR, Amutio M, Lopez G, Olazar M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Process. Technol. 2015;137:283-289. https://doi.org/10.1016/j.fuproc.2015.03.011
  63. Ozbay G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: Effect of temperature and catalyst additives. J. Wood Chem. Technol. 2015;35:302-313. https://doi.org/10.1080/02773813.2014.958240
  64. Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C (Charles). Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils. Fuel 2015;162:74-83. https://doi.org/10.1016/j.fuel.2015.08.055
  65. Yorgun S, Yildiz D. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrol. 2015;114:68-78. https://doi.org/10.1016/j.jaap.2015.05.003
  66. Salehi E, Abedi J, Harding TG, Seyedeyn-Azad F. Bio-oil from sawdust: Design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant. Energ. Fuel. 2013;27:3332-3340. https://doi.org/10.1021/ef400802b
  67. Ozbay G. Pyrolysis of firwood (Abies bornmülleriana Mattf.) sawdust: Characterization of bio-oil and bio-char. Drvna Ind. 2015;66:105-114. https://doi.org/10.5552/drind.2015.1359
  68. Morali U, Yavuzel N, Sensoz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresour. Technol. 2016;221:682-685. https://doi.org/10.1016/j.biortech.2016.09.081
  69. Liu S, Xie Q, Zhang B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour. Technol. 2016;204:164-170. https://doi.org/10.1016/j.biortech.2015.12.085
  70. Chen T, Liu R, Scott NR. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover - Biochar, syngas and bio-oil. Fuel Process. Technol. 2016;142:124-134. https://doi.org/10.1016/j.fuproc.2015.09.034
  71. Mante OD, Agblevor FA. Catalytic pyrolysis for the production of refinery-ready biocrude oils from six different biomass sources. Green Chem. 2014;16:3364-3377. https://doi.org/10.1039/C4GC00555D
  72. Ravikumar C, Senthil Kumar P, Subhashni SK, Tejaswini PV, Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sust. Mater. Technol. 2017;11:19-27. https://doi.org/10.1016/j.susmat.2016.12.003
  73. Liu S, Zhang Y, Fan L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel 2017;196:261-268. https://doi.org/10.1016/j.fuel.2017.01.116
  74. Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017;237:57-63. https://doi.org/10.1016/j.biortech.2017.02.046
  75. Oudenhoven SRG, Westerhof RJM, Kersten SRA. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields. J. Anal. Appl. Pyrol. 2015;116:253-262. https://doi.org/10.1016/j.jaap.2015.09.003
  76. Patil PT, Armbruster U, Martin A. Hydrothermal liquefaction of wheat straw in hot compressed water and subcritical water-alcohol mixtures. J. Supercrit. Fluid. 2014;93:121-129. https://doi.org/10.1016/j.supflu.2014.01.006
  77. Tomás-Pejó E, Fermoso J, Herrador E, et al. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel 2017;199:403-412. https://doi.org/10.1016/j.fuel.2017.03.006
  78. Suriapparao DV, Vinu R. Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Adv. 2015;5:57619-57631. https://doi.org/10.1039/C5RA08666C
  79. Sellin N, Krohl DR, Marangoni C, Souza O. Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renew. Energ. 2016;96:56-64. https://doi.org/10.1016/j.renene.2016.04.032
  80. Abdullah N, Sulaiman F, Taib RM, Miskam MA. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process. In: AIP Conference Proceeding; 24 April 2015.
  81. Torri IDV, Paasikallio V, Faccini CS, et al. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresour. Technol. 2016;200:680-690. https://doi.org/10.1016/j.biortech.2015.10.086
  82. Charon N, Ponthus J, Espinat D, et al. Multi-technique characterization of fast pyrolysis oils. J. Anal. Appl. Pyrol. 2015;116:18-26. https://doi.org/10.1016/j.jaap.2015.10.012
  83. Kim KH, Kim T-S, Lee S-M, et al. Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renew. Energ. 2013;50:188-195. https://doi.org/10.1016/j.renene.2012.06.030
  84. Papari S, Hawboldt K, Helleur R. Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil. Ind. Eng. Chem. Res. 2015;54:605-611. https://doi.org/10.1021/ie5039456
  85. Mazlan MAF, Uemura Y, Osman NB, Yusup S. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energ. Convers. Manage. 2015;98:208-214. https://doi.org/10.1016/j.enconman.2015.03.102
  86. Ahiekpor JC, Kuye AO, Achaw OW. Optimization of the pyrolysis of hardwood sawdust in a fixed bed reactor using surface response methodology. Lignocellulose 2017;6:98-108.
  87. Oasmaa A, Meier D. Characterisation, analysis, norms and standards. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. United Kingdom; 2005. p. 19-60.
  88. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A. Gen. 2011;407:1-19. https://doi.org/10.1016/j.apcata.2011.08.046
  89. Oasmaa A, Meier D. Analysis, characterization and test methods of fast pyrolysis liquids. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. Newbury; 2002. p. 23-35.
  90. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ. Fuel. 2006;20:848-889. https://doi.org/10.1021/ef0502397
  91. Abdullah N, Gerhauser H, Sulaiman F. Fast pyrolysis of empty fruit bunches. Fuel 2010;89:2166-2169. https://doi.org/10.1016/j.fuel.2009.12.019
  92. Solikhah MD, Pratiwi FT, Heryana Y, et al. Characterization of bio-oil from fast pyrolysis of palm frond and empty fruit bunch. In: IOP conference series: Materials science and engineering. Volume 349. IOP Publishing; 2018.
  93. Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenerg. 2014;62:174-181. https://doi.org/10.1016/j.biombioe.2014.01.002
  94. Cai W, Liu R, He Y, Chai M, Cai J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018;171:308-317. https://doi.org/10.1016/j.fuproc.2017.12.001
  95. Borges FC, Du Z, Xie Q, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014;156:267-274. https://doi.org/10.1016/j.biortech.2014.01.038
  96. Mullen CA, Boateng AA, Hicks KB, Goldberg NM, Moreau RA. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energ. Fuel. 2010;24:699-706. https://doi.org/10.1021/ef900912s
  97. Ba T, Chaala A, Garcia-Perez M, Rodrigue D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ. Fuel. 2004;18:704-712. https://doi.org/10.1021/ef030118b
  98. Tzanetakis T, Ashgriz N, James DF, Thomson MJ. Liquid fuel properties of a hardwood-derived bio-oil fraction. Energ. Fuel. 2008;22:2725-2733. https://doi.org/10.1021/ef7007425
  99. Wikipedia. Pyrolysis oil [Internet]. [cited 5 September 2018]. Available from: https://en.wikipedia.org/w/index.php?title=Pyrolysis_oil&oldid=845786946.
  100. Abdul Raman NA, Hainin MR, Abdul Hassan N, Ani FN. A review on the application of bio-oil as an additive for asphalt. J. Teknol. 2015;72:105-110.
  101. Mathias J-D, Grediac M, Michaud P. Bio-based adhesives. In: Biopolymers and biotech admixtures for eco-efficient construction materials. Cambridge: Woodhead Publishing; 2016. p. 369-385.
  102. Sibaja B, Adhikari S, Celikbag Y, Via B, Auad ML. Fast pyrolysis bio-oil as precursor of thermosetting epoxy resins. Polym. Eng. Sci. 2018;58:1296-1307. https://doi.org/10.1002/pen.24694
  103. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem. 2014;16:1987-1998. https://doi.org/10.1039/C3GC42613K
  104. Maheshwari DK. Composting for sustainable agriculture. Switzerland: Springer International Publishing; 2014.

Cited by

  1. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review vol.9, 2020, https://doi.org/10.3389/fchem.2021.812331
  2. Biochar Derived from Agricultural Wastes as a Means of Facilitating the Degradation of Azo Dyes by Sulfides vol.11, pp.4, 2021, https://doi.org/10.3390/catal11040434
  3. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review vol.23, pp.10, 2021, https://doi.org/10.1039/d1gc00623a
  4. Valorization of waste tire by pyrolysis and hydrothermal liquefaction: a mini-review vol.23, pp.5, 2020, https://doi.org/10.1007/s10163-021-01252-1
  5. Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems vol.16, pp.5, 2020, https://doi.org/10.1007/s42835-021-00808-3
  6. A Mini Review on Pyrolysis of Natural Algae for Bio-Fuel and Chemicals vol.9, pp.11, 2020, https://doi.org/10.3390/pr9112042