DOI QR코드

DOI QR Code

A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask

  • Received : 2018.11.28
  • Accepted : 2019.02.03
  • Published : 2020.02.28

Abstract

Here in this work, a 4-chlorophenol (4-CP)-degrading bacterial strain Bacillus subtilis (B. subtilis) MF447840.1 was isolated from the drain outside the Hyundai car service center, Agartala, Tripura, India. 16S rDNA technique used carried out for genomic recognition of the bacterial species. Isolated bacterial strain was phylogenetically related with B. subtilis. This strain was capable of breaking down both phenol and 4-CP at the concentration of 1,000 mg/L. Also, the isolated strain can able to metabolize five diverse aromatic molecules such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and pentachlorophenol for their growth. An extensive investigation was performed to portray the kinetics of cell growth along with 4-CP degradation in the batch study utilizing 4-CP as substrate. Various unstructured models were applied to evaluate the intrinsic kinetic factors. Levenspiel's model demonstrates a comparatively enhanced R2 value (0.997) amongst every analyzed model. The data of specific growth rate (μ), saturation constant (KS), and YX/S were 0.11 h-1, 39.88 mg/L, along with 0.53 g/g, correspondingly. The isolated strain degrades 1,000 mg/L of 4-CP within 40 h. Therefore, B. subtilis MF447840.1 was considered a potential candidate for 4-CP degradation.

Keywords

References

  1. O'Connell DW, Birkinshaw C, O'Dwyer TF. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008;99:6709-6724. https://doi.org/10.1016/j.biortech.2008.01.036
  2. Patel BP, Kumar A. Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: Effect of HRT, loading rate and biogenic substrate. 3 Biotech 2016;6:1-9. https://doi.org/10.1007/s13205-015-0313-6
  3. Wang Q, Li Y, Li J, Wang Y, Wang C, Wang P. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ. Sci. Pollut. Res. 2015;22:565-573. https://doi.org/10.1007/s11356-014-3374-x
  4. Cooper V, Nicell J. Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Res. 1996;30:954-964. https://doi.org/10.1016/0043-1354(95)00237-5
  5. Igbinosa EO, Odjadjare EE, Chigor VN, et al. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013;2013:1-11.
  6. Hu P, Huang J, Ouyang Y, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health 2013;35:767-778. https://doi.org/10.1007/s10653-013-9533-z
  7. Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol. 2009;43:9361-9367. https://doi.org/10.1021/es9022738
  8. Durruty I, Okada E, Gonzalez JF, Murialdo SE. Multisubstrate monod kinetic model for simultaneous degradation of chlorophenol mixtures. Biotechnol. Bioprocess Eng. 2011;16:908-915. https://doi.org/10.1007/s12257-010-0418-z
  9. Ra JS, Oh S-Y, Lee BC, Kim SD. The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ. Int. 2008;34:184-192. https://doi.org/10.1016/j.envint.2007.08.001
  10. Akinpelu EA, Adetunji AT, Ntwampe SKO, Nchu F, Mekuto L. Performance of Fusarium oxysporum EKT01/02 isolate in cyanide biodegradation system. Environ. Eng. Res. 2018;23:223-227. https://doi.org/10.4491/eer.2017.154
  11. Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ. Sci. Pollut. Res. 2014;21:1444-1454. https://doi.org/10.1007/s11356-013-2040-z
  12. Geed S, Kureel M, Giri B, Singh R, Rai B. Performance evaluation of Malathion biodegradation in batch and continuous packed bed bioreactor (PBBR). Bioresour. Technol. 2017;227:56-65. https://doi.org/10.1016/j.biortech.2016.12.020
  13. Sahoo NK, Pakshirajan K, Ghosh PK. Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor. Biodegradation 2014;25:705-718. https://doi.org/10.1007/s10532-014-9693-2
  14. Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK. Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresour. Technol. 2014;165:265-269. https://doi.org/10.1016/j.biortech.2014.01.098
  15. Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H. The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem. Eng. J. 2005;24:243-247. https://doi.org/10.1016/j.bej.2005.02.016
  16. Uday USP, Majumdar R, Tiwari ON, et al. Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102. 1) and its application in orange peel hydrolysis. Int. J. Biol. Macromol. 2017;105:401-409. https://doi.org/10.1016/j.ijbiomac.2017.07.066
  17. Leszczynska D, Bogatu C, Beqa L, Veerepalli R. Simultaneous determination of chlorophenols from quaternary mixtures using multivariate calibration. Chem. Bull. "POLITEHNICA" Univ. (Timisoara) 2010;55:5-8.
  18. Wang L, Li Y, Yu P, Xie Z, Luo Y, Lin Y. Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J. Hazard. Mater. 2010;183:366-371. https://doi.org/10.1016/j.jhazmat.2010.07.033
  19. Tosu P, Luepromchai E, Suttinun O. Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent. Environ. Eng. Res. 2015;20:141-148. https://doi.org/10.4491/eer.2014.039
  20. Hossain SG, McLaughlan RG. Oxidation of chlorophenols in aqueous solution by excess potassium permanganate. Water Air Soil Pollut. 2012;223:1429-1435. https://doi.org/10.1007/s11270-011-0955-x
  21. Kim J, Min KA, Cho KS, Lee IS. Enhanced bioremediation and modified bacterial community structure by barn yard grass in diesel-contaminated soil. Environ. Eng. Res. 2007;12:37-45. https://doi.org/10.4491/eer.2007.12.2.037
  22. Nongbri BB, Syiem MB. Diversity analysis and molecular typing of cyanobacteria isolated from various ecological niches in the state of Meghalaya, North-East India. Environ. Eng. Res 2012;17:21-26. https://doi.org/10.4491/eer.2012.17.S1.S21
  23. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406-425.
  24. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581
  26. Tallur P, Megadi V, Kamanavalli C, Ninnekar H. Biodegradation of p-cresol by Bacillus sp. strain PHN 1. Curr. Microbiol. 2006;53:529-533. https://doi.org/10.1007/s00284-006-0309-x
  27. Tallur P, Megadi V, Ninnekar H. Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1. Biodegradation 2009;20:79-83. https://doi.org/10.1007/s10532-008-9201-7
  28. Hasan SA, Jabeen S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol. Biotechnol. Equip. 2015;29:45-53. https://doi.org/10.1080/13102818.2014.991638
  29. Kumar A, Bhunia B, Dasgupta D, et al. Optimization of culture condition for growth and phenol degradation by Alcaligenes faecalis JF339228 using Taguchi Methodology. Desalin. Water Treat. 2013;51:3153-3163. https://doi.org/10.1080/19443994.2012.749021
  30. Mandal S, Bhunia B, Kumar A, et al. A statistical approach for optimization of media components for phenol degradation by Alcaligenes faecalis using Plackett-Burman and response surface methodology. Desalin. Water Treat. 2013;51:6058-6069. https://doi.org/10.1080/19443994.2013.769746
  31. Khan F, Pal D, Vikram S, Cameotra SS. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1. PLoS One 2013;8:e62178. https://doi.org/10.1371/journal.pone.0062178
  32. Bhunia B, Basak B, Bhattacharya P, Dey A. Kinetic studies of alkaline protease from Bacillus licheniformis NCIM-2042. J. Microbiol. Biotechnol. 2012;22:1758-1766. https://doi.org/10.4014/jmb.1206.06015
  33. Lobo CC, Bertola NC, Contreras EM, Zaritzky NE. Monitoring and modeling 4-chlorophenol biodegradation kinetics by phenol-acclimated activated sludge by using open respirometry. Environ. Sci. Pollut. Res. 2018;25:21272-21285. https://doi.org/10.1007/s11356-017-9735-5
  34. Edwards VH. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970;12:679-712. https://doi.org/10.1002/bit.260120504
  35. Wang S-J, Loh K-C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme Microb. Technol. 1999;25:177-184. https://doi.org/10.1016/S0141-0229(99)00060-5
  36. Han K, Levenspiel O. Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol. Bioeng. 1988;32:430-447. https://doi.org/10.1002/bit.260320404
  37. Luong J. Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng. 1987;29:242-248. https://doi.org/10.1002/bit.260290215
  38. Okpokwasili G, Nweke C. Microbial growth and substrate utilization kinetics. African J. Biotechnol. 2006;5:305-317.
  39. Livingston AG, Chase HA. Modeling phenol degradation in a fluidized‐bed bioreactor. AIChE J. 1989;35:1980-1992. https://doi.org/10.1002/aic.690351209
  40. Kumar A, Kumar S, Kumar S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem. Eng. J. 2005;22:151-159. https://doi.org/10.1016/j.bej.2004.09.006
  41. Bhunia B, Basak B, Bhattacharya P, Dey A. Process engineering studies to investigate the effect of temperature and pH on kinetic parameters of alkaline protease production. J. Biosci. Bioeng. 2013;115:86-89. https://doi.org/10.1016/j.jbiosc.2012.08.003
  42. Jiang Y, Nanqi R, Xun C, Di W, Liyan Q, Sen L. Biodegradation of phenol and 4-chlorophenol by the mutant strain CTM 2. Chinese J. Chem. Eng. 2008;16:796-800. https://doi.org/10.1016/S1004-9541(08)60158-5
  43. Basak B, Bhunia B, Dutta S, Dey A. Enhanced biodegradation of 4-chlorophenol by Candida tropicalis PHB5 via optimization of physicochemical parameters using Taguchi orthogonal array approach. Int. Biodeterior. Biodegrad. 2013;78:17-23. https://doi.org/10.1016/j.ibiod.2012.12.005
  44. Yano T, Koga S. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol. Bioeng. 1969;11:139-153. https://doi.org/10.1002/bit.260110204
  45. Wang J, Ma X, Liu S, Sun P, Fan P, Xia C. Biodegradation of phenol and 4-chlorophenol by Candida tropicalis W1. Procedia Environ. Sci. 2012;16:299-303. https://doi.org/10.1016/j.proenv.2012.10.042
  46. Liu Y, Liu J, Li C, Wen J, Ban R, Jia X. Metabolic profiling analysis of the degradation of phenol and 4-chlorophenol by Pseudomonas sp. cbp1-3. Biochem. Eng. J. 2014;90:316-323. https://doi.org/10.1016/j.bej.2014.06.026

Cited by

  1. Bacilli- Mediated Degradation of Xenobiotic Compounds and Heavy Metals vol.8, 2020, https://doi.org/10.3389/fbioe.2020.570307
  2. Biokinetic aspects for biocatalytic remediation of xenobiotics polluted seawater vol.129, pp.2, 2020, https://doi.org/10.1111/jam.14626
  3. Polyphasic characterization and identification of the bioremediation agent Bacillus sp. SFC 500-1E vol.112, pp.6, 2020, https://doi.org/10.1016/j.ygeno.2020.08.008
  4. Optimized parameters using Box–Behnken design methodology facilitate enhanced phenol degradation of Bacillus cereus PB1 by immobilization and adsorption vol.30, pp.2, 2020, https://doi.org/10.1002/tqem.21708
  5. Computational fluid dynamics analysis of flow through immobilized catalyzed packed bed reactor for removal of 4-chlorophenol from wastewater vol.25, pp.6, 2020, https://doi.org/10.4491/eer.2019.184
  6. Biodegradation and enhancement of 2,4-dichlorophenol by marine halophilic Bacillus subtilis AAK vol.47, pp.2, 2021, https://doi.org/10.1016/j.ejar.2021.04.005
  7. An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes vol.28, pp.28, 2021, https://doi.org/10.1007/s11356-021-13531-3
  8. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice vol.9, pp.10, 2020, https://doi.org/10.3390/pr9101696
  9. Vanadium selenide decorated reduced graphene oxide nanocomposite: A co-active catalyst for the detection of 2,4,6 – Trichlorophenol vol.282, 2021, https://doi.org/10.1016/j.chemosphere.2021.130874
  10. Kinetic modelling and process engineering of phenolics microbial and enzymatic biodegradation: A current outlook and challenges vol.44, 2020, https://doi.org/10.1016/j.jwpe.2021.102421
  11. Biodegradation of 4-chlorophenol in batch and continuous packed bed reactor by isolated Bacillus subtilis vol.301, 2022, https://doi.org/10.1016/j.jenvman.2021.113851