DOI QR코드

DOI QR Code

Breakthrough modeling of furfural sorption behavior in a bagasse fly ash packed bed

  • Singh, Saurabh (Department of Chemical Engineering, Indian Institute of Technology Roorkee) ;
  • Srivastava, Vimal Chandra (Department of Chemical Engineering, Indian Institute of Technology Roorkee) ;
  • Goyal, Akash (Department of Chemical Engineering, Indian Institute of Technology Roorkee) ;
  • Mall, Indra Deo (Department of Chemical Engineering, Indian Institute of Technology Roorkee)
  • 투고 : 2018.11.19
  • 심사 : 2019.02.13
  • 발행 : 2020.02.28

초록

Adsorptive breakthrough modelling is essential for design of a sorption packed bed. In this work, breakthrough modelling of the furfural uptake in bagasse fly ash (BFA) packed bed has been performed. Effect of various parameters like bed height (Z = 15-60 cm), flow rate (Q = 0.02-0.04 L/min) and initial furfural concentration (Co = 50-200 mg/L) on the breakthrough curve of furfural sorption in a BFA packed bed have been studied. Enhanced breakthrough performance was observed for the higher value of Z, and lower values of Co and Q. For Co = 100 mg/L, packed bed operated at Q = 0.03 L/min and Z = 60 cm was found to have lowest adsorbent utilization rate of 5.61 g/L with highest breakthrough volume of 14.67 L. Bed depth service time and Thomas models well represented the experimental data points under all experimental conditions. It can be concluded that BFA can be utilized efficiently in continuous system for the removal of furfural. Overall, more than 99% of furfural was adsorbed in BFA packed bed at experimental conditions.

키워드

참고문헌

  1. Sahu AK, Mall ID, Srivastava VC. Studies on the adsorption of furfural from aqueous solution onto low-cost bagasse fly ash. Chem. Eng. Commun. 2008;195:316-335. https://doi.org/10.1080/00986440701555274
  2. Sahu AK, Mall ID, Srivastava VC. Adsorption of furfural from aqueous solution onto activated carbon: Kinetic, equilibrium and thermodynamic study. Sep. Sci. Technol. 2008;43:1239-1259. https://doi.org/10.1080/01496390701885711
  3. Steyermark A. Kirk-Othmer encyclopedia of chemical technology. Vol. 14. 3rd ed. Microchemical Journal. New Jersey; John Wiley & Sons, Inc; 1984.
  4. Pitter P. Determination of biological degradability of organic substances. Water Res. 1976;10:231-235. https://doi.org/10.1016/0043-1354(76)90132-9
  5. Rivard CJ, Grohmann K. Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by anaerobic consortium. Appl. Biochem. Biotechnol. 1991;28:285-295. https://doi.org/10.1007/BF02922608
  6. Borghei SM, Hosseini SN. Comparison of furfural degradation by different photooxidation methods. Chem. Eng. J. 2008;139:482-488. https://doi.org/10.1016/j.cej.2007.08.020
  7. Gupta P, Nanoti A, Garg MO, Goswami AN. The removal of furfural from water by adsorption with polymeric resins. Sep. Sci. Technol. 2001;36:2835-2844. https://doi.org/10.1081/SS-100107632
  8. Lucas S, Cocero MJ, Zetzl C, Brunner G. Adsorption isotherms for ethylacetate and furfural on activated carbon from supercritical carbon dioxide. Fluid Phase Equilibria 2004;219:171-179. https://doi.org/10.1016/j.fluid.2004.01.034
  9. Mall ID, Srivastava VC, Kumar GVA, Mishra IM. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf. A: Physicochem. Eng. Asp 2006;278:175-187. https://doi.org/10.1016/j.colsurfa.2005.12.017
  10. Mane V, Mall ID, Srivastava VC. Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rise husk ash. J. Environ. Manage. 2007;84:390-400. https://doi.org/10.1016/j.jenvman.2006.06.024
  11. Srivastava VC, Mall ID, Mishra IM. Treatment of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash. Colloids Surf. A: Physicochem. Eng. Asp 2005;260:17-28. https://doi.org/10.1016/j.colsurfa.2005.02.027
  12. Srivastava VC, Mall ID, Mishra IM. Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Sep. Sci. Technol. 2006;41:2685-2710. https://doi.org/10.1080/01496390600725687
  13. Srivastava VC, Mall ID, Mishra IM. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem. Eng. J. 2007;132:267-278. https://doi.org/10.1016/j.cej.2007.01.007
  14. Treybal RE. Mass-transfer operations. 3rd ed. McGraw-Hill International Editions; 1981.
  15. Inglezakis VJ, Hadjiandreou KJ, Loizidou MD, Grigoropoulou HP. Pretreatment of natural clinoptilolite in a laboratory-scale ion exchange packed bed. Water Res. 2001;35:2161-2166. https://doi.org/10.1016/S0043-1354(00)00500-5
  16. Milan Z, Sanchez E, Weiland P, et al. Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite. Chem. Eng. J. 1997;66:65-71. https://doi.org/10.1016/S1385-8947(96)03180-4
  17. Namane A, Hellal A. The dynamic adsorption characteristics of phenol by granular activated carbon. J. Hazard. Mater. 2006;137:618-625. https://doi.org/10.1016/j.jhazmat.2006.02.052
  18. Gilca E, Maicaneanu A, Ilea P. Kinetics analysis of zinc sorption in fixed bed column using a strongly basic anionic exchange resin. Water Sci. Technol. 2015;71:1646-1653. https://doi.org/10.2166/wst.2015.136
  19. Yazid H, Amour L, Terkmani A, Maachi R. Biosorption of lead from aqueous solution by biologically activated date pedicels: Batch and column study. Desalin. Water Treat. 2013;51:1690-1699. https://doi.org/10.1080/19443994.2012.693676
  20. Sulaymon AH, Yousif SA, Al-Faize MM. Competitive biosorption of lead, mercury, chromium and arsenic ions onto activated sludge in fixed bed adsorber. J. Taiwan Inst. Chem. Eng. 2014;45:325-337. https://doi.org/10.1016/j.jtice.2013.06.034
  21. Goel J, Kadirvelu K, Rajagopal C, Garg VK. Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard. Mater. 2005;125:211-220. https://doi.org/10.1016/j.jhazmat.2005.05.032
  22. Thanhmingliana, Lalhriatpuia C, Tiwari D, Lee SM. Efficient removal of $17{\beta}$-estradiol using hybrid clay materials: Batch and column studies. Environ. Eng. Res. 2016;21:203-210. https://doi.org/10.4491/eer.2016.003
  23. Vera LM, Bermejo D, Uguna MF, Garcia N, Flores M, Gonzalez E. Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse. Environ. Eng. Res. 2018;24:31-37. https://doi.org/10.4491/eer.2018.042
  24. Han R, Ding D, Xu Y, et al. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2002;99:2938-2946. https://doi.org/10.1016/j.biortech.2007.06.027
  25. Gobi K, Mashitah MD, Vadivelu VM. Utilising waste activated sludge from a palm oil mill effluent treatment plant to remove methylene blue in continuous column studies. Int. J. Environ. Eng. 2012;4:253-268. https://doi.org/10.1504/IJEE.2012.050798
  26. Sadaf S, Bhatti HN. Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. J. Taiwan Inst. Chem. Eng. 2014;45:541-553. https://doi.org/10.1016/j.jtice.2013.05.004
  27. Lodeiro P, Cordero B, Grille Z, Herrero R, Sde V. Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe. Sargassum muticum. Biotechnol. Bioeng. 2004;88:237-247. https://doi.org/10.1002/bit.20229
  28. Lee I, Park JA, Kang JK, et al. Batch and flow-through column studies for Cr(VI) sorption to activated carbon fiber. Environ. Eng. Res. 2014;19:157-163. https://doi.org/10.4491/eer.2014.19.2.157
  29. Inglezakis VJ, Lemonidou M, Grigoropoulou HP. Liquid holdup and dispersion in zeolite packed beds. Chem. Eng. Sci. 2001;56:5049-5057. https://doi.org/10.1016/S0009-2509(01)00189-0
  30. Cooney DO. Adsorption design for wastewater treatment. Boca Raton, FL: Lewis Publishers; 1999.
  31. Netpradit S, Thiravetyan P, Towprayoon S. Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed bed column system. Water Res. 2004;38:71-78. https://doi.org/10.1016/j.watres.2003.09.007
  32. Zulfadhly Z, Mashitah MD, Bhatia S. Heavy metals removal in fixed bed column by macro fungus Pycnoporus sanguineus. Environ. Pollut. 2001;112:463-470. https://doi.org/10.1016/S0269-7491(00)00136-6
  33. Srivastava VC, Prasad B, Mishra IM, Mall ID, Swamy MM. Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Ind. Eng. Chem. Res. 2008;47:1603-1613. https://doi.org/10.1021/ie0708475
  34. McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. 5th ed. Singapore: McGraw-Hill International Editions; 1993.
  35. de Franco MAE, de Carvalho CB, Bonetto MM, Soares RP, Feris LA. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod. 2017;161:947-956. https://doi.org/10.1016/j.jclepro.2017.05.197
  36. de Franco MAE, de Carvalho CB, Bonetto MM, Soares RP, Feris LA. Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: Isotherms, thermodynamic study and breakthrough curves modeling. J. Clean. Prod. 2018;181:145-154. https://doi.org/10.1016/j.jclepro.2018.01.138
  37. Sotelo JL, Ovejero G, Rodriguez A, Alvarez S, Galan J, Garcia J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014;240:443-453. https://doi.org/10.1016/j.cej.2013.11.094
  38. Mthombeni NH, Mbakop S, Ray SC, Leswifi T, Aoyi Ochieng, Onyango MS. Highly efficient removal of chromium(VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite polypyrrole composite. J. Environ. Chem. Eng. 2018;6:4008-4017. https://doi.org/10.1016/j.jece.2018.05.038
  39. Lin S, Song Z, Che G, et al. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Micro. Meso. Mater. 2014;193:27-34. https://doi.org/10.1016/j.micromeso.2014.03.004
  40. Hayati B, Maleki A, Najafi F, et al. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J. 2018:346;258-270. https://doi.org/10.1016/j.cej.2018.03.172
  41. Bohart G, Adams EQ. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 1920;42:523-544. https://doi.org/10.1021/ja01448a018
  42. Hadi M, Samarghandi MR, McKay G. Simplified fixed bed design models for the adsorption of acid dyes on novel pine cone derived activated carbon. Water Air Soil Pollut. 2011;218:197-212. https://doi.org/10.1007/s11270-010-0635-2
  43. Hutchins RA. New method simplifies design of activated-carbon system. Chem. Eng. 1973;80:133-138.
  44. Sharma DC, Foster CF. Column studies into the adsorption of chromium(VI) using sphagnum moss peat. Bioresour. Technol. 1995;52:261-267. https://doi.org/10.1016/0960-8524(95)00035-D
  45. Thomas HC. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944;66:1664-1666. https://doi.org/10.1021/ja01238a017
  46. Zeinali F, Ghoreyshi AA, Najafpour G. Removal of toluene and dichloromethane from aqueous phase by granular activated carbon (GAC). Chem. Eng. Commun. 2012;199:203-220. https://doi.org/10.1080/00986445.2011.584354
  47. Dorado AD, Gamisans X, Valderrama C, Sole M, Lao C. Cr(III) removal from aqueous solutions: A straightforward model approaching of the adsorption in a fixed-bed column. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2014;49:179-186. https://doi.org/10.1080/10934529.2013.838855
  48. Aksu Z, Gonen F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochem. 2004;39:599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
  49. Ghali AE, Baouabb MHV, Roudeslia MS. Preparation, characterization and application of a [copper(II)/ethylenediamine-cotton] complex for the removal of AB25 from aqueous solution in a laboratory scale column. Chem. Eng. J. 2011;174:18-26. https://doi.org/10.1016/j.cej.2011.07.046
  50. Singh S, Srivastava VC, Mall ID. Fixed-bed study for adsorptive removal of furfural by activated carbon. Colloids Surf. A: Physicochem. Eng. Asp. 2009;332:50-56. https://doi.org/10.1016/j.colsurfa.2008.08.025
  51. Xu X, Gao B, Tan X, et al. Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chem. Eng. J. 2013;226:1-6. https://doi.org/10.1016/j.cej.2013.04.033
  52. Gouran-Orimi R, Mirzayi B, Nematollahzadeh A, Tardast A. Competitive adsorption of nitrate in fixed-bed column packed with bio-inspired polydopamine coated zeolite. J. Environ. Chem. Eng. 2018;6:2232-2240 https://doi.org/10.1016/j.jece.2018.01.049
  53. Niasar HS, Sreejon Das, Xu C, Ray MB. Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water (OSPW) using carbon-based adsorbents. Chemosphere 2019;214:511-518. https://doi.org/10.1016/j.chemosphere.2018.09.078

피인용 문헌

  1. Integrated Multiproduct Biorefinery for Furfural Production with Acetic Acid and Lignin Recovery: Design, Scale-Up Evaluation, and Technoeconomic Analysis vol.8, pp.47, 2020, https://doi.org/10.1021/acssuschemeng.0c04871
  2. The mechanisms of conventional pollutants adsorption by modified granular steel slag vol.26, pp.1, 2021, https://doi.org/10.4491/eer.2019.352
  3. A general review on the use of advance oxidation and adsorption processes for the removal of furfural from industrial effluents vol.331, 2022, https://doi.org/10.1016/j.micromeso.2021.111638