DOI QR코드

DOI QR Code

Isolation and HPLC-DAD validation of xanthoangelol in Lespedeza bicolor extract

싸리나무 추출물의 Xanthoangelol 분리 및 HPLC-DAD 밸리데이션

  • Woo, Hyun Sim (Department of Forest Plant Industry, Baekdudaegan National Arboretum) ;
  • Kim, Yeong-Su (Department of Forest Plant Industry, Baekdudaegan National Arboretum) ;
  • Oh, Yu Jin (Department of Forest Plant Industry, Baekdudaegan National Arboretum) ;
  • Cho, Hae Jin (Department of Forest Plant Industry, Baekdudaegan National Arboretum) ;
  • Song, Se-Kyu (Department of Forest Plant Industry, Baekdudaegan National Arboretum) ;
  • Kim, Dae Wook (Department of Forest Plant Industry, Baekdudaegan National Arboretum)
  • 우현심 (국립백두대간수목원, 산림식물산업부) ;
  • 김영수 (국립백두대간수목원, 산림식물산업부) ;
  • 오유진 (국립백두대간수목원, 산림식물산업부) ;
  • 조해진 (국립백두대간수목원, 산림식물산업부) ;
  • 송세규 (국립백두대간수목원, 산림식물산업부) ;
  • 김대욱 (국립백두대간수목원, 산림식물산업부)
  • Received : 2019.11.12
  • Accepted : 2019.12.09
  • Published : 2020.02.29

Abstract

This study was undertaken to determine the characteristics of xanthoangelol, the major chalcone constituent derived from the extracts of different parts of Lespedeza bicolor. Xanthoangelol was isolated from the root extract using column chromatography and used as a standard for quantitative analysis. The structure of the isolated compound was established based on spectroscopic evidence. The HPLC-DAD method was validated for specificity, linearity, precision, accuracy, limit of detection, and limit of quantitation. The calibration curve of xanthoangelol had significant linearity (R2>0.9999). Limit of detection and limit of quantitation 0.018 and 0.059 ㎍/mL, respectively. The relative standard deviation values of precision test, and intra- and inter-day tests were less than 0.22 and 0.40%, respectively. In the recovery test, the accuracy ranged from 98.98-102.78% with RSD values less than 0.13%. The method validation parameters indicate the applicability of the HPLC method for quality control of food or drug formulations containing L. bicolor.

본 연구는 싸리나무의 기능성 식의약품 개발을 위해 부위별 최적의 에탄올 추출조건을 탐색하고 HPLC-DAD 분석방법에 대한 밸리데이션을 실시하였다. 싸리나무뿌리 추출물로부터 반복적인 크로마토그래피 기법으로 주요성분을 분리하여 NMR, MS와 같은 기기분석 data를 해석하여 xanthoangelol 화합물임을 확인하였다. Xanthoangelol를 표준물질로 선정하여 HPLC-DAD 분석법이 타당한지를 검토하기 위하여 직선성, 일간 일내 정확성, 정밀성 검출한계 및 정량한계를 확인하는 분석법 밸리데이션을 수행하였다. Xanthoangelol 분석은 ZORBAX Eclipse plus C18 (4.6×150 mm, 5 ㎛) 칼럼과 기울기 용출(gradient elution) 방법으로, 370 nm 파장에서 다른 물질의 간섭 없이 안정되게 분석되는 것을 확인하였다. 기능성 소재로 적용하기에 적합한 물과 에탄올을 이용해 농도별(water, 30, 50, 70, 95% EtOH)로 추출하고 xanthoangelol의 함량을 분석하였으며, 에탄올 비율에 따라 대상 성분의 추출율을 조절함으로써 기능성 바이오 식의약품 원료 개발을 위한 기초 자료로 활용할 수 있을 것으로 생각한다.

Keywords

References

  1. Akihisa T, Tokuda H, Ukiya M, Iizuka M, Schneider S, Ogasawara K, Mukainaka T, Iwatsuki K, Suzuki T, Nishino H. Chalcones, coumarins, and flavanones from the exudate of Angelica keiskei and their chemopreventive effects. Cancer Lett. 201: 133-137 (2003) https://doi.org/10.1016/S0304-3835(03)00466-X
  2. Do MH, Lee JH, Wahedi HM, Pak CH, Lee CH, Yeo EJ, Lim YS, Ha SK, Choi IW, Kim SY. Lespedeza bicolor ameliorates endothelial dysfunction induced by methylglyoxal glucotoxicity, Phytomedicine 36: 26-36 (2017) https://doi.org/10.1016/j.phymed.2017.09.005
  3. ICH harmonized tripartite guideline, validation of analytical procedures: text and methodology Q2 (R1), ICH Harmonized Tripartite Guidelines, November 2005. http://www.ich.org/LOB/media/MEDIA417.pdf.
  4. Kimura Y, Baba K. Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: isolation of an active substance, xanthoangelol. Int. J. Cancer. 106: 429-437 (2003) https://doi.org/10.1002/ijc.11256
  5. Korea National Arboretum. Available from: http://www.kna.go.kr. Accessed Jun. 1, 2012.
  6. Lee SJ. Report on Korean folk-medicine. Seoul Natl Univ, Korea. pp. 75-101 (1972)
  7. Lee YS, Chang, Park SC, Rim NR, Kim NW. Antioxidative and irritation response of Lespedeza bicolor. J. Toxicol. Public Health 21: 115-119 (2005a)
  8. Lee SJ, Hossaine M.D.A., Park SC. A potential anti-inammation activity and depigmentation eect of Lespedeza bicolor extract and its fractions. Saudi J. Biol. Sci. 22: 9-14 (2016)
  9. Lee JH, Jhoo JW. Antioxidant Activity of Different Parts of Lespedeza bicolor and Isolation of Antioxidant Compound. Korean J. Food Sci. Technol. 44: 763-771 (2012) https://doi.org/10.9721/KJFST.2012.44.6.763
  10. Lee YS, Joo EU, Kim NW. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J. Food Preserv. 12: 75-79 (2005b)
  11. Lee KI, Yang SA, Kim SM. Antioxidative and Nitric Oxide Production Inhibitory Activities of Lespedeza bicolor Stem Extracts Depending on Solvents. Korean J. Med. Crop Sci. 19: 368-372 (2011) https://doi.org/10.7783/KJMCS.2011.19.5.368
  12. Li Y, Goto T, Ikutani1 R, Lin S, Takahashi N, Takahashi H, Jheng HF, Yu R, Taniguchi, Baba K, Murakami S, Kawada T. Xanthoangelol and 4-Hydroxyderrcin Suppress Obesity-Induced Inflammatory Responses. Obesity. 24: 2351-2360 (2016) https://doi.org/10.1002/oby.21611
  13. Maximov OB, Kulesh NI, Stepanenko LS, Dmitrenok PS. New prenylated isoflavanones and other constituents of Lespedeza bicolor. Fitoterapia. 75: 96-98. (2004) https://doi.org/10.1016/j.fitote.2003.07.012
  14. Ryu IS, Lee SJ, Lee SW, Mun YJ, Woo WH, Kim YM, Lee JC, Lim KS. Dermal Bioactive Properties of the Ethanol Extract from Flowers of Lespedeza bicolor. J. Korean Med. Ophthalmol. Otolaryngol. Dermatol. 20: 1-9 (2007)
  15. Samiullah, Bano A, Girmay S, Tan G. Total Phenolic Content, Antioxidant, Antimicobial and Anticancer Activities of Lespedeza Bicolor Turcz (Papilionaceae). The International Society for Applied Life Sciences (ISALS). 10-12 (2012)
  16. Sun W, Meng X, Lianq L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wnag L. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway. PLoS One 10(3): e0119054 (2015) https://doi.org/10.1371/journal.pone.0119054
  17. Sumiyoshi M, Taniguchib M, Babab K, Kimura Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophage. Phytomedicine 22: 759-767 (2015) https://doi.org/10.1016/j.phymed.2015.05.005
  18. Tabata K, Motani N, Takayanagi N, Nishimura R, Asaml S, Kimura Y, Ukiya M, Hasegawa D, Akihisa T, Suzuk T. Xanthoangelol, a major chalcone constituent of Angelica keiskei, induces Apoptosis in Neuroblastoma and Leukemia Cells. Biol. Pharm. Bull. 28:1404-0407 (2005) https://doi.org/10.1248/bpb.28.1404
  19. Ullah S. Methanolic extract from Lespedeza bicolor: potential candidates for natural antioxidant and anticancer agent, J. Tradit. Chin. Med. 37: 444-451 (2017) https://doi.org/10.1016/S0254-6272(17)30150-4
  20. Woo HS, Kim DW, Curis-Long MJ, Lee BW, Lee JH, Kim JY, Kang JE, Park KH. Potent inhibition of bacterial neuraminidase activity by pterocarpans isolated from the roots of Lespedeza bicolor, Bioorg. Med. Chem. Lett. 21: 6100-6103 (2011) https://doi.org/10.1016/j.bmcl.2011.08.046