DOI QR코드

DOI QR Code

Elucidation of the Biosynthetic Pathway of Vitamin B Groups and Potential Secondary Metabolite Gene Clusters Via Genome Analysis of a Marine Bacterium Pseudoruegeria sp. M32A2M

  • Cho, Sang-Hyeok (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Eunju (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Ko, So-Ra (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Sangrak (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Song, Yoseb (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Chi-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Cho, Suhyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2019.11.05
  • Accepted : 2020.01.12
  • Published : 2020.04.28

Abstract

The symbiotic nature of the relationship between algae and marine bacteria is well-studied among the complex microbial interactions. The mutual profit between algae and bacteria occurs via nutrient and vitamin exchange. It is necessary to analyze the genome sequence of a bacterium to predict its symbiotic relationships. In this study, the genome of a marine bacterium, Pseudoruegeria sp. M32A2M, isolated from the south-eastern isles (GeoJe-Do) of South Korea, was sequenced and analyzed. A draft genome (91 scaffolds) of 5.5 Mb with a DNA G+C content of 62.4% was obtained. In total, 5,101 features were identified from gene annotation, and 4,927 genes were assigned to functional proteins. We also identified transcription core proteins, RNA polymerase subunits, and sigma factors. In addition, full flagella-related gene clusters involving the flagellar body, motor, regulator, and other accessory compartments were detected even though the genus Pseudoruegeria is known to comprise non-motile bacteria. Examination of annotated KEGG pathways revealed that Pseudoruegeria sp. M32A2M has the metabolic pathways for all seven vitamin Bs, including thiamin (vitamin B1), biotin (vitamin B7), and cobalamin (vitamin B12), which are necessary for symbiosis with vitamin B auxotroph algae. We also identified gene clusters for seven secondary metabolites including ectoine, homoserine lactone, beta-lactone, terpene, lasso peptide, bacteriocin, and non-ribosomal proteins.

Keywords

References

  1. Horton T, Kroh A, Ahyong S, Bailly N, Boyko CB, Brandao SN, et al. 2019 World Register of Marine Species (WoRMS). Available from http://www.marinespecies.org/aphia.php?p=stats.
  2. Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115: 6506-6511. https://doi.org/10.1073/pnas.1711842115
  3. Herndl G, Weinbauer M. 2003. Marine microbial food web structure and function, pp. 265-277. Marine science frontiers for Europe, Ed. Springer.
  4. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10: 538-550. https://doi.org/10.1038/nrmicro2832
  5. Lidicker Jr WZ. 1979. A clarification of interactions in ecological systems. Bioscience 29: 475-477. https://doi.org/10.2307/1307540
  6. Seymour JR, Amin SA, Raina J-B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2: 17065. https://doi.org/10.1038/nmicrobiol.2017.65
  7. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3: 331-335. https://doi.org/10.1038/nchem.1002
  8. Paul C, Pohnert G. 2011. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6: e21032. https://doi.org/10.1371/journal.pone.0021032
  9. Amin SA, Kupper FC, Green DH, Harris WR, Carrano CJ. 2007. Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J. Am. Chem. Soc. 129: 478-479. https://doi.org/10.1021/ja067369u
  10. Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ. 2009. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. USA 106: 17071-17076. https://doi.org/10.1073/pnas.0905512106
  11. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112: 453-457. https://doi.org/10.1073/pnas.1413137112
  12. Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76: 667-684. https://doi.org/10.1128/MMBR.00007-12
  13. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T. 2006. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int. J. Syst. Evol. Microbiol. 56: 1293-1304. https://doi.org/10.1099/ijs.0.63724-0
  14. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12: 686-698. https://doi.org/10.1038/nrmicro3326
  15. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93. https://doi.org/10.1038/nature04056
  16. Park S, Park JM, Yoon JH. 2018. Pseudoruegeria insulae sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 68: 3587-3592. https://doi.org/10.1099/ijsem.0.003035
  17. Park S, Park JM, Lee JS, Oh TK, Yoon JH. 2018. Pseudoruegeria litorisediminis sp. nov., a novel lipolytic bacterium of the family Rhodobacteraceae isolated from a tidal flat. Arch. Microbiol 200: 1183-1189. https://doi.org/10.1007/s00203-018-1539-6
  18. Lee JB, Kim H, Park DS, Yang JH, Chun YY, Lee KH, et al. 2014. Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. Antonie Van Leeuwenhoek 105: 987-994. https://doi.org/10.1007/s10482-014-0158-8
  19. Cha IT, Park I, Lee HW, Lee H, Park JM, Roh SW, et al. 2016. Pseudoruegeria aestuarii sp. nov., of the family Rhodobacteraceae, isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 66: 3125-3131. https://doi.org/10.1099/ijsem.0.001156
  20. Park S, Jung YT, Won SM, Yoon JH. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281. https://doi.org/10.1099/ijs.0.066258-0
  21. Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY, Whon TW, et al. 2013. Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai. Int. J. Syst. Evol. Microbiol. 63: 4626-4632. https://doi.org/10.1099/ijs.0.053892-0
  22. Jung YT, Kim BH, Oh TK, Yoon JH. 2010. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int. J. Syst. Evol. Microbiol. 60: 1177-1181. https://doi.org/10.1099/ijs.0.015073-0
  23. Yoon JH, Lee SY, Kang SJ, Lee CH, Oh TK. 2007. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 57: 542-547. https://doi.org/10.1099/ijs.0.64594-0
  24. Park S, Jung Y-T, Won S-M, Yoon J-H. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281. https://doi.org/10.1099/ijs.0.066258-0
  25. Zhang Y, Xu Y, Fang W, Wang X, Fang Z, Xiao Y. 2017. Pseudoruegeria marinistellae sp. nov., isolated from an unidentified starfish in Sanya, China. Antonie Van Leeuwenhoek 110: 187-194. https://doi.org/10.1007/s10482-016-0789-z
  26. Pohlner M, Marshall I, Schreiber L, Cypionka H, Engelen B. 2017. Draft genome sequence of Pseudoruegeria sp. SK021, a representative of the marine Roseobacter group, isolated from north sea sediment. Genome Announc. 5(24): e00541-17.
  27. Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJ, et al. 2019. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20: 615-628. https://doi.org/10.1038/s41576-019-0152-0
  28. Croft MT, Warren MJ, Smith AG. 2006. Algae need their vitamins. Eukaryot. Cell 5: 1175-1183. https://doi.org/10.1128/EC.00097-06
  29. Roosaare M, Puustusmaa M, Mols M, Vaher M, Remm M. 2018. PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads. Peer J. 6: e4588. https://doi.org/10.7717/peerj.4588
  30. Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285. https://doi.org/10.1007/s12275-018-8014-6
  31. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  33. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462. https://doi.org/10.1093/nar/gkv1070
  34. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
  35. Consortium TGO. 2014. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43: D1049-D1056. https://doi.org/10.1093/nar/gku1179
  36. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
  37. Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Res. 43: W39-W49. https://doi.org/10.1093/nar/gkv416
  38. Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 3(3): 10.1128/microbiolspec.MB-0011-2014.
  39. Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. 2014. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21: 528. https://doi.org/10.1038/nsmb.2820
  40. Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. 2017. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45: 3615-3626. https://doi.org/10.1093/nar/gkx070
  41. Sharma CM, Vogel J. 2014. Differential RNA-seq: the approach behind and the biological insight gained. Curr. Opin. Microbiol. 19: 97-105. https://doi.org/10.1016/j.mib.2014.06.010
  42. Grossart H-P, Simon M. 2007. Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47: 163-176. https://doi.org/10.3354/ame047163
  43. Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
  44. Cole JJ. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13: 291-314. https://doi.org/10.1146/annurev.es.13.110182.001451
  45. Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. USA 107: 20756-20761. https://doi.org/10.1073/pnas.1009566107
  46. Jurgenson CT, Begley TP, Ealick SE. 2009. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 78: 569-603. https://doi.org/10.1146/annurev.biochem.78.072407.102340
  47. Zempleni J, Wijeratne SS, Hassan YI. 2009. Biotin. Biofactors 35: 36-46. https://doi.org/10.1002/biof.8
  48. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19: 390-412. https://doi.org/10.1039/b108967f
  49. Bernard T, Jebbar M, Rassouli Y, Himdi-Kabbab S, Hamelin J, Blanco C. 1993. Ectoine accumulation and osmotic regulation in Brevibacterium linens. Microbiology 139: 129-136.
  50. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial community interactions. mBio. 9: e02331-02317.
  51. Klein I, von Rad U, Durner J. 2009. Homoserine lactones: do plants really listen to bacterial talk? Plant Signal Behav. 4: 50-51. https://doi.org/10.4161/psb.4.1.7300
  52. Robinson SL, Christenson JK, Wackett LP. 2019. Biosynthesis and chemical diversity of ${\beta}$-lactone natural products. Nat. Prod. Rep. 36: 458-475. https://doi.org/10.1039/c8np00052b
  53. Oldfield E, Lin FY. 2012. Terpene biosynthesis: modularity rules. Angew. Chem. Intl. Ed. Engl. 51: 1124-1137. https://doi.org/10.1002/anie.201103110
  54. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112: 857-862. https://doi.org/10.1073/pnas.1422108112
  55. Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY. 2007. Plant terpenoids: biosynthesis and ecological functions. J. Int. Plant Biol. 49: 179-186. https://doi.org/10.1111/j.1744-7909.2007.00395.x
  56. Cheung-Lee WL, Parry ME, Cartagena AJ, Darst SA, Link AJ. 2019. Discovery and structure of the antimicrobial lasso peptide citrocin. J. Biol. Chem. 294: 6822-6830. https://doi.org/10.1074/jbc.ra118.006494
  57. Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. 2018. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg. Med. Chem. 26: 6050-6055. https://doi.org/10.1016/j.bmc.2018.11.007
  58. Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85. https://doi.org/10.1016/0168-6445(93)90057-G
  59. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30: 108-160. https://doi.org/10.1039/C2NP20085F
  60. Bozhuyuk KA, Linck A, Tietze A, Kranz J, Wesche F, Nowak S, et al. 2019. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 11: 653-661 https://doi.org/10.1038/s41557-019-0276-z
  61. Bloudoff K, Schmeing TM. 2017. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim. Biophys. Acta Proteins Proteom. 1865: 1587-1604. https://doi.org/10.1016/j.bbapap.2017.05.010
  62. Lee C-K, Park T-G, Park Y-T, Lim W-A. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30: S3-S14. https://doi.org/10.1016/j.hal.2013.10.002
  63. Kim JH, Lee M, Lim YK, Kim YJ, Baek SH. 2019. Occurrence characteristics of harmful and non-harmful algal species related to coastal environments in the southern sea of Korea. Mar. Freshw. Res. 70: 794-806. https://doi.org/10.1071/MF18244

Cited by

  1. Compositional and Functional Microbiome Variation Between Tubes of an Intertidal Polychaete and Surrounding Marine Sediment vol.8, 2020, https://doi.org/10.3389/fmars.2021.656506
  2. Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M vol.31, pp.4, 2021, https://doi.org/10.4014/jmb.2012.12054