DOI QR코드

DOI QR Code

PSCAD/EMTDC를 이용한 3 상 다층 고온 초전도 케이블의 모델링 및 과도 해석

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC

  • 투고 : 2019.12.03
  • 심사 : 2020.01.28
  • 발행 : 2020.02.29

초록

3상 다층 고온 초전도 동축 케이블은 초전도 선재 사용량의 감소 및 케이블의 소형화와 같은 이점 때문에 활발히 연구되고 있다. 3상 다층 고온 초전도 동축 케이블의 전기적 특성은 기존 초전도 케이블과 차이를 가지므로 실제 시스템에 적용하기 위해 충분한 분석이 필요하다. 본 논문에서는 PSCAD/EMTDC 기반 시뮬레이션을 통하여 22.9 kV, 60 MVA급 3상 다층 고온 초전도 동축 케이블을 모델링하고 과도 특성을 분석하였다. 결과적으로 3상 다층 고온 초전도 동축 케이블에서 고장전류가 발생하면 대부분의 고장전류가 구리 포머층을 통해 우회한다. 이때, 케이블 전체 온도는 약 5 K 증가하였다. 본 논문을 통해 3상 다층 고온 초전도 동축 케이블의 과도 상태에 대한 신뢰성을 확인할 수 있으며 향후 케이블의 실 계통 적용에 도움이 될 수 있다.

Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.

키워드

참고문헌

  1. Bang, J. H., Je, H. H., Kim, J. H., Sim, K. D., Cho, J., Yoon, J. Y., Park, M., and Yu, I. K.. (2007). Critical Current, Critical Temperature and Magnetic Field based EMTDC Model Component for HTS Power Cable, IEEE Transactions on Applied Superconductivity, 17(2), 1726-1729, https://doi.org/10.1109/TASC.2007.898034.
  2. Ha, S. K., Kim, S. K., Kim, J. G., Park, M., Yu, I. K., Lee, S., Sim, K. D., and Kim, A. R. (2012). Fault Current Characteristic Analysis of a Tri-axial HTS Power Cable using PSCAD/EMTDC, IEEE Transactions on Applied Superconductivity, 23(3), 5400104-5400104. https://doi.org/10.1109/TASC.2012.2233261
  3. Hamajima, T., Yagai, T., Tsuda, M., and Harada, N., (2005). Current Distribution Analysis in Tri-Axial HTS Cable Considering 3 Phases, IEEE Transactions on Applied Superconductivity, 15(2), 1775-1778. https://doi.org/10.1109/TASC.2005.849286.
  4. Kelley, N., Mathan, M., and Masur, L.. (2001). Application of HTS Wire and Cables to Power Transmission: State of the Art and Opportunities, IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 448-454.
  5. Kim, J. G., Lee, J., Kim, J. H., Kim, A. R., Cho, J., Sim, K. D., Kim, S, Lee, J. K., Park, M., and Yu, I. K.. (2009). HTS Power Cable Model Component Development for PSCAD/EMTDC considering Conducting and Shield Layers, IEEE Transactions on Applied Superconductivity, 19(3), 1785-1788. http://doi.org/101109/TASC.2009.2019434. https://doi.org/10.1109/TASC.2009.2019434
  6. Kiss, T., Inoue, M., Hasegawa, K., Vysotsky, V. S., llyin Y., and Irie, E. (1999). Quench Characteristics in HTSC Devices, IEEE Transactions on Applied Superconductivity, 9(2), 1073-1076. https://doi.org/10.1109/77.783483
  7. Lee, S. J. (2019). AC Loss Characteristic Analysis of Superconducting Power Cable for High Capacity Power Transmission, Korea Society of Industrial Information Systems Research, 24(2), 57-63, https://doi.org/10.9723/jksiis.2019.24.2.057.
  8. Park, M., and Yu, I. K.. (2004). A Novel Real-time Simulation Technique of Photovoltaic Generation System using RTDS, IEEE Transactions on Energy Conversion, 19(1), 164-169. http://doi.org/10.1109/TEC.2003.821837.
  9. Zhang, J. W., Hu, D., Zhang, L., Song, M., Luo, Y. S., Li, L., and Jin, Z. (2018). Numerical Study of the Thermal Stability of YBa2Cu3O7 − ${\delta}$ Tapes Suffering Lightning Current, IEEE Transactions on Applied Superconductivity, 28(5), 1-7. http://doi.org/10.1109/TASC.2018.2803023