21(2): 5~13. (February 2020) http://www.kges.or.kr

소규모 필댐의 침투수 관리를 위한 감압정 효과에 대한 수치해석

Numerical Analysis of Relief Well Effect for Seepage Control of Small Fill Dam

장 재 훈¹⁾ · 유 찬 호²⁾ · 백 승 철[†]

Jaehoon Chang · Chanho Yoo · Seungcheol Baek

Received: January 3rd, 2020; Revised: January 3rd, 2020; Accepted: January 17th, 2020

ABSTRACT : The relief wells have been studied to be effective in seepage control in small dams such as agricultural dams. However, quantitative studies on the effects of the relief well are rare and there is no design standard also. To quantitatively analyze the effects of the seepage control in small dams, the research of up-lift pressure influencing the toe of dam body was conducted by seepage analysis, which investigates the behavior characteristics, according to the conditions of dam and foundation. The effect of seepage control was studied by analyzing the reduction effect of up-lift pressure at foundation ground of the toe of downstream dam slope depending on the installation of the relief well. As a result, it was found that the relief wells are effective in reducing the pore water pressure in the foundation, which can cause piping and sliding failure.

Keywords : Relief well, Fill dam, Seepage control, Up-lift pressure

요 지: 감압정은 소규모 필댐과 같은 소규모 댐에서 침투수 관리에 효과가 있다고 보고되고 있지만 감압정의 효과에 대한 정량적 인 연구는 드물고 설계기준 또한 전무한 실정이다. 이에 본 연구에서는 소규모 필댐의 침투수 처리 효과를 정량적으로 분석하고자 댐 제체와 기초지반의 조건에 따른 침투해석을 수행하여 침투수의 거동특성을 파악함으로써, 댐 제체 선단에 작용하는 양압력을 분석하였다. 감압정의 설치 여부에 따라 댐 하류부 제체 선단의 기초지반에 작용하는 양압력의 감소 효과를 분석하였으며, 분석결과 감압정은 기초지반에서 파이핑 및 제체 활동을 유발시킬 수 있는 간극수압을 저감시키는데 효과가 있는 것을 확인하였다.

주요어: 감압정, 필댐, 침투수 처리, 양압력

1. 서 론

국내의 소규모 필댐은 약 17,000여개가 있으며, 노후화 된 소규모 필댐은 침투수에 의한 제체의 내부 침식으로 인 해 침투수가 유출되어 댐의 안정성이 저하되는 문제가 빈번 하게 발생되고 있다. 이런 침투수 관리를 위해서 국내에서 는 대부분 차수 그라우팅 공법을 이용하여 침투수 유출을 방지하도록 보수보강하는 방법이 적용되고 있다. 그러나 그 라우팅 주입재료의 시간경과에 따른 용탈문제 그리고 공사 중 품질관리 문제로 인해 일정시간이 경과한 이후에 재차 보강하는 사례가 증가하고 있어 침투수 관리를 위한 그라우 팅 공법이 비경제적이고 효율적이지 못한 보수보강 공법으 로 평가되고 있다.

소규모 댐의 경우에는 침투수 관리를 위한 대안으로 감 압정이 소개되고 있으며 국외에서는 많은 사례가 보고되고 있으나, 국내에서는 감압정의 효과에 대한 연구가 매우 드 물고 감압정의 설계기준 또한 전무한 실정이다. 이에 본 연 구에서는 소규모 필댐의 침투수 관리가 가능한 감압정 공법 의 효과를 수치해석 기법을 이용하여 확인하였다.

수치해석은 소규모 필댐의 조건과 댐 제체 그리고 기초지 반의 조건에 따른 침투해석을 수행하여 침투수의 거동특성 을 파악하여 댐 제체 선단에 작용하는 양압력을 분석하였고 감압정의 형태에 따라 댐 제체 선단에 작용하는 양압력의 감소 효과를 분석함으로써 침투수 처리 효과를 분석하였다.

2. 침투수 처리를 위한 감압정 공법

2.1 감압정 공법의 구성 및 원리

감압정이란 압력을 해소하기 위하여 수직으로 설치되어

¹⁾ Vice President, Korea Engineering Research Co., Ltd.

²⁾ President, Asin Civil engineering & Technology Co., Ltd.

[†] Professor, Department of Civil Engineering, Andong National University (Corresponding Author : civilb@anu.ac.kr)

Fig. 1. Typical relief well (U.S. Armys Corps of Engineers, 1992)

스크린이 포함된 관정을 말하며, 기초지반의 토사 유출을 방지하기 위하여 필터재료가 스크린을 둘러싸고 있는 형태 로 구성된다. 일반적인 감압정의 구성은 Fig. 1과 같이 직경 은 15.2~45.7cm로 최대 설계수위 조건에서 압력수두를 저 감시키기 위한 목적으로 사용되고 있다.

침투수 처리를 위한 최초의 감압정은 미공병단에 의해 처음 사용되었는데 댐에서 작용하는 양압력을 감소시키기 위해 1942년부터 1943년에 모타나주에 있는 Fort Peck 댐에 21개를 설치한 것이 최초이다. 최초의 감압정 설계는 1943년 6월 미시시피주에 있는 Arkabutla 댐을 대상으로 7.6m의 간격으로 하류부 제체 선단을 따라 계획하였다(U.S. Army Corps of Engineers(1992)).

2.2 감압정 공법의 설계방법

(1) 일반

U.S. Army Corps of Enginners(1992)에 따르면 감압정 공 법의 설계를 위해서는 5가지의 기본사항이 필요한데 이는 기초지반의 조사, 기초지반의 투수특성, 이방성, 지하수의 화학적 특성, 침투해석이다.

기초지반 조사는 충분한 보링조사를 통해 침투수의 유입 유출부의 지층조건 그리고 지층의 심도 및 두께와 함께 물 리적 특성을 파악하도록 권장하고 있다. 기초지반의 투수특 성은 지반조사와 함께 실내투수시험 또는 입자에 따른 투수 특성을 파악하도록 권장하고 있지만 가장 정확한 방법은 현 장에서 양수시험을 통해 대수층에서의 투수특성을 파악하 는 것이 감압정 설계에 도움이 되기 때문에 추천하고 있다. 침투수의 해석 및 분석방법은 기본적으로 퇴적층이 등방 성 일때를 가정하고 있지만, 실제 지반의 경우에는 퇴적층 이 항상 층상이 아니고 때때로 경사를 이루고 있어 이방성 을 나타낼 수 있어 감압정 공법 설계를 위해서는 기초지반 의 이방성을 설계단계에서 파악하도록 권장하고 있다.

필댐에 저수되는 수자원은 강의 퇴적물과 화학물질이 용 해되어 있기 때문에 감압정은 시간이 경과함에 따라 지하수 에 용해되어 있는 화학물질에 의하여 클로깅 현상과 침투수 배출 효과가 감소될 수 있다. 따라서 감압정 설계에는 지하 수 시료를 채취하여 성분 분석을 하도록 권장하고 있으며 (Huibregtse & Moser, 1976), 시험항목은 Table 1에 나타내 었다.

마지막으로 감압정 설계를 위해서는 침투해석을 통해 감 압정 시스템을 결정하도록 권장하고 있는데 침투해석은 대 상 구조물의 홍수조건에서 수행하는 것을 원칙으로 한다.

(2) 허용수두

필댐과 같은 구조물 하부에 투수성 지반이 퇴적되어 있 는 경우에는 균등한 정수압의 분포가 형성되지 못할 수 있 으며, 침투수가 투수성 지반으로 유출되어 지중압력을 생성

Table 1		Indicators	of	corrosive	and	incrusting	waters
---------	--	------------	----	-----------	-----	------------	--------

Classification	Indicators of corrosive water	Indicators of incrusting water
Indicator items Indicator items 5. Car 6. Chl	pH less than 7 solved oxygen in excess of 2 ppm drogen sulfide (H ₂ S) in excess of 1 ppm detected by a ten egg odor tal dissolved solids in excess of 1,000 ppm indicates an lity to conduct electric current great enough to cause ious electrolytic corrosion rbon dioxide (CO ₂) in excess of 50 ppm lorides (CL) in excess of 500 ppm	 A pH greater than 7 Total iron (Fe) in excess of 2 ppm Total manganese (Mn) in excess of a 1 ppm in conjunction with a high pH and the presence of oxygen Total carbonate hardness in excess of 300 ppm

시켜 제체 하류부에서는 히빙에 의한 파괴 또는 파이핑을 발생시킬 수 있다. 감압정은 바로 이러한 현상을 방지하기 위하여 적용되고 있으며 적정한 안전율을 두어 양압력과 히 빙에 의한 파괴를 예방하는데 제체 하류부의 최상단 지층에 서 작용하는 수두를 허용수두 (*h_a*)라고 정의하여 다음과 같 이 나타낸다.

$$F_s = \frac{i_{cr}}{i_c} = \frac{\frac{\gamma'}{\gamma_w}}{\frac{h_a}{Z_t}} = \frac{\gamma' Z_t}{\gamma_w h_a}$$
(1)

여기서, i_c : 한계동수경사, 흙의 수중단위중량(γ')과 물 의 단위중량(γ_w)의 비 Z₄ : 침투수가 흐르는 최상단 지층의 두께

파이핑과 양압력에 대한 안전율은 최소 1.5 이상으로 하 면, 허용수두 (*h_a*)는 다음과 같이 나타낼 수 있다.

$$h_a = \frac{i_c}{F_s} Z_t \tag{2}$$

(3) 단일 감압정의 효과

지중에 단일 감압정이 설치되었을 때 인근에서의 수두변 화는 단일 우물에서 양수하였을 때 인근에서의 지하수위의 변화를 계산하는 방법과 동일하게 정의될 수 있다. 모든 지 하수의 흐름이 정상류 조건라고 가정할 때 Darcy의 법칙이 적용될 수 있으며, 특정 지질학적 또는 지형조건에서 양수 로 인한 지하수의 유출이 원형으로 발생한다고 가정하면 임 의 지점에서 예상되는 지하수 수두 (*h_p*)와 양수되는 우물에 서의 수두 (*h_w*)는 다음과 같이 나타낼 수 있다.

$$h_p = H - \frac{Q_w}{2\pi kD} \ln \frac{R}{r} \tag{3}$$

$$h_w = H - \frac{Q_w}{2\pi kD} \ln \frac{R}{r_w} \tag{4}$$

여기서, h_p : 양수되는 우물과 지하수가 유출되는 지반 사 이 임의의 점에서의 수두, h_w : 우물에서의 수두, r_w : 우물 의 반경, H: 지하수가 유출되는 지반의 수두, k: 지하수가 유출되는 지반의 투수계수, D: 투수층 두께, Q_w : 우물에 서의 양수량, R: 영향반경

(4) 다중 감압정의 효과

지중에 다중 감압정이 설치되었을 때의 인근에서의 수두 변화 역시 다중 우물이 설치되었을 때 지하수의 변화를 계산 하는 방법과 동일하게 계산할 수 있으며, Forcheimer(1914) 가 제시하여 Dachler(1936)가 수정한 방법에 따르면 임의의 지점 예상되는 지하수 수두 (h_p)와 양수되는 우물에서의 수 두 (h_w)는 다음과 같이 나타낼 수 있다.

$$h_{p} = H_{1} - \frac{1}{2\pi kD} \left(Q_{w1} \ln \frac{R_{1}}{r_{1}} + Q_{w2} \ln \frac{R_{2}}{r_{2}} + \dots + Q_{wn} \ln \frac{R_{n}}{r_{n}} \right)$$
(5)

또는

$$h_{p} = H_{1} - \frac{1}{2\pi kD} \left(\sum_{i=1}^{i=n} Q_{wi} \ln \frac{R_{i}}{r_{i}} \right)$$
(6)

여기서, H : 시스템에서의 총 수두, n : 우물의 개수, Q_{wi} : i번째 우물에서의 유출량, R_i : i번째 우물의 반경, r_i : 수 두 측정지점과 i번째 우물의 거리

3. 감압정 효과 확인을 위한 수치해석

3.1 개요

필댐의 침투수 저감을 위한 감압정의 설계는 별도의 설 계기준이 없이 전술한 바와 같이 관정을 통해 유출되는 양 에 따라서 관정에서의 지하수위가 저하되는 방법으로 적 용되고 있으며, 관정의 크기에 따라 침투수가 정량적으로 저하되는 해석기법도 전무한 실정이다. 이에 본 연구에서 는 필댐의 침투해석에 범용적으로 사용되는 Geo-Slope사 의 SEEP/W 프로그램을 이용하여 감압정의 효과를 확인하 고자 하였다.

SEEP/W 프로그램에서 수직으로 설치된 관정에서 지하 수를 양수할 때의 수위의 변화는 Schwartz & Zhang(2003) 의 제안식을 따르고 있으며, 관정을 통해 지하수의 양이 유 출되는 방식을 모델링하는 것으로 권장하고 있다. 그러나 이러한 방법은 축대칭 모델링에서는 유효하지만 필댐과 같 이 평면변형률 조건에서는 이론식과 같이 해석되지 못하는 문제가 있고, 펌프를 통해 양수하는 관정에서의 수위변화를 예측하는 방법과는 달리 감압정은 수두차에 의해 자연 배수 하는 메커니즘이기 때문에 본 연구에서는 Eq. (3)에서 제안 하는 감압정의 침투수 배출량에 따라 감압정의 수위변화를 예측하여 해석에 위치수두로 작용하는 방법으로 수치해석 을 수행하였다.

Eq. (3)에서 우물에서 배출돼는 유출량은 지중에 설치된 감압정을 통해 자연 배수되는 유출량으로 가정한다면, Dacy 의 법칙을 따라 Eq. (3)은 다음과 같이 나타낼 수 있다.

$$h_{p} = H - \frac{Q_{w}}{2\pi kD} \ln \frac{R}{r} = H - \frac{kiA}{2\pi kD} \ln \frac{R}{r}$$
$$= H - \frac{i2\pi rl}{2\pi D} \ln \frac{R}{r}' = H - \frac{irl}{D} \ln \frac{R}{r}$$
(7)

여기서, A: 감압정의 면적, l: 감압정의 길이

감압정의 효과를 위한 수치해석은 Eq. (7)을 이용하여 감 압정에서의 수위를 예측하여 감압정 효과를 확인하는 방법 으로 수행하였고, 감압정의 정량적인 효과를 확인하기 위하 여 필댐의 높이, 경사, 축조재료 그리고 원지반의 투수특성 을 변수로 하여 변수분석을 함으로써 감압정의 정량적인 침 투수 저감 효과를 확인하였다.

3.2 수치해석 조건

본 연구에서는 필댐의 감압정의 효과를 정량적으로 확인 하기 위하여 수치해석을 수행하였으며, 필댐의 기하학적 조 건과 지반의 역학적인 조건을 모두 변수로 하여 수치해석을 수행하였다. 수치해석이 수행된 모형 필댐은 Fig. 2에 나타 낸 바와 같이 균질형 필댐으로 가정하였고, 하부 기초지반 도 단일 지층으로 가정하였다. 수치해석은 감압정이 없는 필댐과 감압정이 설치된 필댐에 대하여 각각 수치해석을 수 행함으로써 감압정의 효과를 정량적으로 분석할 수 있도록 분석하였다. 수치해석이 수행된 해석 조건은 Table 2에 나 타내었다.

3.3 수치해석 방법

본 연구에서는 Table 2에 나타낸 바와 같이 필댐의 기하 학적 조건과 토질조건을 변수로 하여 총 432회의 수치해석 을 수행하였으며, 수치해석의 결과는 감압정의 설치 여부에 따라 필댐의 하류부 비탈면 선단의 기초지반에 작용하는 간 극수압을 측정하여 침투수로 인한 간극수압의 저감효과를 중점적으로 분석하고자 하였다.

본 연구에 적용된 수치해석은 필댐이 가장 극한조건일 수 있는 최대 홍수위 조건으로 가정하였으며, 필댐의 제체 높이가 변화할 때 여유고 1.5m를 만족하도록 가정하여 댐 제체 높이의 변화에 따라 최대 홍수위도 정량적으로 변화하 도록 가정하였다. 아울러 우선 감압정의 장량적인 효과를 분석하기 위하여 시간에 대한 변수는 고려하지 않는 정상류 조건으로 수치해석을 수행하였다.

3.4 수치해석 결과

3.4.1 감압정이 설치되지 않은 필댐의 수치해석 결과

감압정이 설치되지 않은 조건의 균질형 필댐의 침투해석 모델링도와 해석결과는 Fig. 3에 나타내었으며, 수치해석의 결과분석은 침투수가 제체의 안정성에 영향을 가장 크게 미

Fig. 2. Numerical analysis model of fill dam

Table 2. Numerical analy	sis conditior/	١
--------------------------	----------------	---

Classification	Homogeneous earth fill dam	Homogeneous earth fill dam with relief well
Dam height	10m, 20m, 30m	10m, 20m, 30m
Dam angle	1:2, 1:3, 1:4, 1:5	1:2, 1:3, 1:4, 1:5
Fill material (Permeability, k=m/s)	1.0×10 ⁻⁶ , 1.0×10 ⁻⁷ , 1.0×10 ⁻⁸	1.0×10 ⁻⁶ , 1.0×10 ⁻⁷ , 1.0×10 ⁻⁸
Foundation material (Permeability, k=m/s)	1.0×10 ⁻³ , 1.0×10 ⁻⁴ , 1.0×10 ⁻⁵ , 1.0×10 ⁻⁶ , 1.0×10 ⁻⁷ , 1.0×10 ⁻⁸	1.0×10 ⁻³ , 1.0×10 ⁻⁴ , 1.0×10 ⁻⁵ , 1.0×10 ⁻⁶ , 1.0×10 ⁻⁷ , 1.0×10 ⁻⁸
Relief well	No	Yes (Relief well dia.=300mm, Depth=Dam height)

치는 간극수압을 중심으로 분석하였다. 제체 하류부 비탈면 의 선단 하부 기초지반에 작용하는 간극수압은 제체의 파이 핑 파괴와 비탈면 활동에 직접적으로 영향을 주는 인자이기 때문에 제체의 기하학적 조건과 토질조건이 변화하는 동안 동일지점에서 작용하는 간극수압을 중점적으로 분석하였고 평가된 간극수압은 Table 3에 나타내었다.

Pore Pressure Check Point

(a) Numerical analysis modeling

(b) Numerical analysis Result

Fig. 3. Numerical analysis modeling and result on earth fill dam without relief well

Table 3. Numerical analysis results	Pore-pressure at downstream fo	oundation ground of earth fil	l dam without relief well
-------------------------------------	--------------------------------	-------------------------------	---------------------------

	Dam condition		Heigh	t = 30m,	Incline =	1:5.0			Heigh	t = 30m,	Incline =	1:4.0	
Classification	Dam mat.		Dam for	undation n	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	48.06	48.42	49.69	49.69	49.4	49.35	48.06	48.42	49.69	49.69	49.4	49.35
pressure	1.0E-07	48.02	48.06	48.42	49.69	49.69	49.4	48.02	48.06	48.42	49.69	49.69	49.4
(kPa)	1.0E-08	48.01	48.02	48.06	48.42	49.69	49.69	48.01	48.02	48.06	48.42	49.69	49.69
	Dam condition		Heigh	t = 30m,	Incline =	1:3.0			Heigh	t = 30m,	Incline =	1:2.0	
Classification	Dam mat.		Dam for	undation n	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	52.85	53.11	54.51	55.31	54.8	54.72	57.73	57.99	59.83	62.43	62.25	62.17
pressure	1.0E-07	52.82	52.85	53.11	54.51	55.24	54.81	57.7	57.73	57.99	59.83	62.43	62.25
(kPa)	1.0E-08	52.82	52.82	52.85	53.11	54.51	55.24	57.7	57.7	57.73	57.99	59.83	62.43
	Dam condition		Heigh	t = 20m,	Incline =	1:5.0			Heigh	t = 20m,	Incline =	1:4.0	
Classification	Dam mat.		Dam for	undation n	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	47.09	47.35	48.47	49	48.98	48.96	48.66	48.9	50.14	51.15	51.16	51.14
pressure	1.0E-07	47.06	47.09	47.35	48.47	49	48.98	48.63	48.66	48.9	50.14	51.15	51.16
(kPa)	1.0E-08	47.06	47.06	47.09	47 35	48 47	49	48.63	48.63	48.66	48.9	50.14	51.15
		17100	17.00	47.09	ч7.55	10.17	12	10.05	10105	10.00	10.5		
	Dam condition	1,100	Heigh	t = 20m,	Incline =	1:3.0		10.05	Heigh	t = 20m,	Incline =	1:2.0	
Classification	Dam condition Dam mat.		Heigh Dam for	t = 20m, undation m	Incline =	1:3.0 (, m/sec)			Heigh Dam for	t = 20m,	Incline =	1:2.0 (, m/sec)	
Classification	Dam condition Dam mat. (k, m/sec)	1.0E-03	Heigh Dam for 1.0E-04	t = 20m, undation m 1.0E-05	Incline = naterial (k 1.0E-06	1:3.0 (m/sec) 1.0E-07	1.0E-08	1.0E-03	Heigh Dam for 1.0E-04	t = 20m, undation r 1.0E-05	Incline = naterial (k 1.0E-06	1:2.0 , m/sec) 1.0E-07	1.0E-08
Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 50.94	Heigh Dam for 1.0E-04 51.16	1.0E-05	Incline = naterial (k $1.0E-06$ 54.31	1:3.0 , m/sec) 1.0E-07 54.43	1.0E-08 54.41	1.0E-03 54.61	Heigh Dam for 1.0E-04 54.81	t = 20m, and ation r 1.0E-05 56.29	Incline = material (k $1.0E-06$ 59.32	1:2.0 , m/sec) 1.0E-07 59.85	1.0E-08 59.88
Classification Pore- pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07	1.0E-03 50.94 50.92	Heigh Dam for 1.0E-04 51.16 50.94	tt = 20m, undation n 1.0E-05 52.53 51.16	Incline = naterial (k 1.0E-06 54.31 52.53	1:3.0 1.0E-07 54.43 54.31	1.0E-08 54.41 54.43	1.0E-03 54.61 54.59	Heigh Dam for 1.0E-04 54.81 54.61	t = 20m, undation r 1.0E-05 56.29 54.81	Incline = naterial (k 1.0E-06 59.32 56.29	1:2.0 , m/sec) 1.0E-07 59.85 59.32	1.0E-08 59.88 59.85
Classification Pore- pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08	1.0E-03 50.94 50.92 50.91	Heigh Dam for 1.0E-04 51.16 50.94 50.92		Incline = naterial (k 1.0E-06 54.31 52.53 51.16	1:3.0 , m/sec) 1.0E-07 54.43 54.31 52.53	1.0E-08 54.41 54.43 54.31	1.0E-03 54.61 54.59 54.59	Heigh Dam for 1.0E-04 54.81 54.61 54.59	t = 20m, undation r 1.0E-05 56.29 54.81 54.61	Incline = naterial (k 1.0E-06 59.32 56.29 54.81	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29	1.0E-08 59.88 59.85 59.32
Classification Pore- pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 50.94 50.92 50.91	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 tt = 10m.	Incline = naterial (k 1.0E-06 54.31 52.53 51.16 Incline =	1:3.0 1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0	1.0E-08 54.41 54.43 54.31	1.0E-03 54.61 54.59 54.59	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh	t = 20m, undation r 1.0E-05 56.29 54.81 54.61 tt = 10m.	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline =	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29 1:4.0	1.0E-08 59.88 59.85 59.32
Classification Pore- pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 50.94 50.92 50.91	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for	1.05 t = 20m, 1.0E-05 52.53 51.16 50.94 t = 10m, undation r	Incline = material (k 1.0E-06 54.31 52.53 51.16 Incline = material (k	1:3.0 1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 r, m/sec)	1.0E-08 54.41 54.43 54.31	1.0E-03 54.61 54.59 54.59	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 t = 10m, undation r	Incline = material (k 1.0E-06 59.32 56.29 54.81 Incline = material (k	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29 1:4.0 , m/sec)	1.0E-08 59.88 59.85 59.32
Classification Pore- pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec)	1.0E-03 50.94 50.92 50.91 1.0E-03	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 at = 10m, undation r 1.0E-05	Incline = naterial (k 1.0E-06 54.31 52.53 51.16 Incline = naterial (k 1.0E-06	1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 ., m/sec) 1.0E-07	1.0E-08 54.41 54.43 54.31	1.0E-03 54.61 54.59 54.59 1.0E-03	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline = naterial (k 1.0E-06	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29 1:4.0 , m/sec) 1.0E-07	1.0E-08 59.88 59.85 59.32 1.0E-08
Classification Pore- pressure (kPa) Classification Pore-	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 at = 10m, undation r 1.0E-05 45.84	Incline = Inaterial (k) I.0E-06 54.31 52.53 51.16 Incline = Inaterial (k) I.0E-06 47	1:3.0 i.0E-07 54.43 54.31 52.53 1:5.0 i.0E-07 47.45	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.91	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05 46.8	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline = naterial (k 1.0E-06 48.41	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29 1:4.0 , m/sec) 1.0E-07 49	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05
Classification Pore- pressure (kPa) Classification Pore- pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45 44.85		Incline = Inaterial (k) I.0E-06 54.31 52.53 51.16 Incline = Inaterial (k) I.0E-06 47 45.84	1:3.0 1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 1.0E-07 47.45 47	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.91 45.77	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05 46.8 45.91	Incline = material (k 1.0E-06) = 59.32 = 56.29 = 54.81 $Incline = material (k 1.0E-06) = 48.41 = 46.8$	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 1.0E-07 49 48.41	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45 44.85 44.83	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 nt = 10m, undation r 1.0E-05 45.84 45 44.85	Incline = Inaterial (k) I.0E-06 (k) S (k	1:3.0 , m/sec) 1.0E-07 54.43 54.31 52.53 1:5.0 , m/sec) 1.0E-07 47.45 47 45.84	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76 45.76	Heigh Dam foo 1.0E-04 54.81 54.61 54.59 Heigh Dam foo 1.0E-04 45.91 45.77 45.76	t = 20m, and ation r $1.0E-05$ 56.29 54.81 54.61 and ation r $1.0E-05$ 46.8 45.91 45.77	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline = naterial (k 1.0E-06 48.41 46.8 45.91	1:2.0 , m/sec) 1.0E-07 59.85 59.32 56.29 1:4.0 , m/sec) 1.0E-07 49 48.41 46.8	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49 48.41
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45 44.85 44.85 44.83	t = 20m, undation m 1.0E-05 52.53 51.16 50.94 at = 10m, undation m 1.0E-05 45.84 45 44.85 at = 10m,	Incline = material (k 1.0E-06 54.31 52.53 51.16 Incline = material (k 1.0E-06 47 45.84 45 Incline =	1:3.0 1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 1.0E-07 47.45 47 45.84 1:3.0	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76 45.76	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.91 45.77 45.76	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05 46.8 45.91 45.77 at = 10m,	Incline = material (k 1.0E-06 59.32 56.29 54.81 Incline = material (k 1.0E-06 48.41 46.8 45.91 Incline =	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 1.0E-07 49 48.41 46.8 1:2.0	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49 48.41
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition 0.0am mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45 44.85 44.85 44.83	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 at = 10m, undation r 1.0E-05 45.84 45 44.85 at = 10m, undation r	Incline = Inaterial (k) I.0E-06 (k) S = 100 (k) S =	1:3.0 i.0E-07 54.43 54.31 52.53 1:5.0 i.0E-07 47.45 47 45.84 1:3.0 c, m/sec)	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76 45.76	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.91 45.77 45.76 Heigh Dam for	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05 46.8 45.91 45.77 at = 10m, and ation r	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline = naterial (k 1.0E-06 48.41 46.8 45.91 Incline = naterial (k	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 1.0E-07 49 48.41 46.8 1:2.0 , m/sec)	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49 48.41
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition 0.0am mat. (k, m/sec) 1.0E-08 1.0E-08 Dam condition Dam mat. (k, m/sec)	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83 1.0E-03	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 Heigh Dam for 1.0E-04	t = 20m, undation r 1.0E-05 52.53 51.16 50.94 at = 10m, undation r 1.0E-05 45.84 45 44.85 at = 10m, undation r 1.0E-05	Incline = naterial (k 1.0E-06 54.31 52.53 51.16 Incline = naterial (k 1.0E-06 47 45.84 45 Incline = naterial (k 1.0E-06	1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 , m/sec) 1.0E-07 47.45 47 45.84 1:3.0 , m/sec) 1.0E-07	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76 45.76 1.0E-03	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.77 45.76 Heigh Dam for 1.0E-04	t = 20m, and ation r 1.0E-05 56.29 54.81 54.61 at = 10m, and ation r 1.0E-05 46.8 45.91 45.77 at = 10m, and ation r 1.0E-05	Incline = naterial (k 1.0E-06 59.32 56.29 54.81 Incline = naterial (k 1.0E-06 48.41 46.8 45.91 Incline = naterial (k 1.0E-06	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 1.0E-07 49 48.41 46.8 1:2.0 , m/sec) 1.0E-07	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49 48.41 1.0E-08
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa) Classification Pore- pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition 0.0E-06. 1.0E-06. Dam mat. (k, m/sec) Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83 1.0E-03 1.0E-03 47.05	Heigh Dam for 1.0E-04 51.16 50.94 50.92 Heigh Dam for 1.0E-04 45 44.85 44.83 Heigh Dam for 1.0E-04 47.17	t = 20m, undation m 1.0E-05 52.53 51.16 50.94 at = 10m, undation m 1.0E-05 45.84 45 44.85 at = 10m, undation m 1.0E-05 48.06	Incline = material (k 1.0E-06 54.31 52.53 51.16 Incline = material (k 1.0E-06 47 45.84 45 Incline = material (k 1.0E-06 50.23	1:3.0 1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 1.0E-07 47.45 47 45.84 1:3.0 , m/sec) 1.0E-07 51.16	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47 1.0E-08 51.26	1.0E-03 54.61 54.59 54.59 1.0E-03 45.77 45.76 45.76 1.0E-03 49.02	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.77 45.76 Heigh Dam for 1.0E-04 49.12	t = 20m, at = 20m, 1.0E-05 56.29 54.81 54.61 at = 10m, andation r 1.0E-05 46.8 45.91 45.77 at = 10m, andation r 1.0E-05 49.96	Incline = material (k 1.0E-06 59.32 56.29 54.81 Incline = material (k 1.0E-06 48.41 46.8 45.91 Incline = material (k 1.0E-06 52.97	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 , m/sec) 1.0E-07 49 48.41 46.8 1:2.0 , m/sec) 1.0E-07 54.36	1.0E-08 59.88 59.85 59.32 1.0E-08 49.05 49 48.41 1.0E-08 54.58
Classification Pore- pressure (kPa) Classification Pore- pressure (kPa) Classification Pore- pressure pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) Dam condition 1.0E-07 Dam mat. (k, m/sec) 1.0E-06. 1.0E-06. 1.0E-07	1.0E-03 50.94 50.92 50.91 1.0E-03 44.85 44.83 44.83 44.83 44.83 44.83 44.83	Heigh Dam foo 1.0E-04 51.16 50.94 50.92 Heigh Dam foo 1.0E-04 44.85 44.83 Heigh Dam foo 1.0E-04 47.17 47.05	t = 20m, $1.0E-05$ 52.53 51.16 50.94 $t = 10m,$ $1.0E-05$ 45.84 45 44.85 $t = 10m,$ $1.0E-05$ 48.06 47.17	Incline = Inaterial (k) I.0E-06 (k) 54.31 (k) 52.53 (k) 51.16 (k) 52.53 (k) 51.16 (k) 52.53 (k) 51.16 (k	1:3.0 1.0E-07 54.43 54.31 52.53 1:5.0 1.0E-07 47.45 47 45.84 1:3.0 , m/sec) 1.0E-07 51.16 50.23	1.0E-08 54.41 54.43 54.31 1.0E-08 47.51 47.45 47 1.0E-08 51.26 51.16	1.0E-03 54.61 54.59 54.59 54.59 1.0E-03 45.77 45.76 45.76 45.76 1.0E-03 49.02 49.01	Heigh Dam for 1.0E-04 54.81 54.61 54.59 Heigh Dam for 1.0E-04 45.77 45.76 Heigh Dam for 1.0E-04 49.12 49.02	t = 20m, $1.0E-05$ 56.29 54.81 54.61 $t = 10m,$ $1.0E-05$ 46.8 45.91 45.77 $t = 10m,$ $1.0E-05$ 49.96 49.12	Incline = material (k 1.0E-06) = 59.32 = 56.29 = 54.81 = 1.0E-06 = 1.0E-06 = 48.41 = 46.8 = 45.91 = 1.0E-06 = 1.0E-06 = 1.0E-06 = 52.97 = 49.96 = 52.97 = 49.96 = 52.97 = 50.000 = 50.0000 = 50.000000000000000	1:2.0 1.0E-07 59.85 59.32 56.29 1:4.0 1.0E-07 49 48.41 46.8 1:2.0 , m/sec) 1.0E-07 54.36 52.97	1.0E-08 59.85 59.32 1.0E-08 49.05 49 48.41 1.0E-08 54.58 54.36

3.4.2 감압정이 설치된 필댐의 수치해석 결과

감압정이 설치된 조건의 균질형 필댐의 침투해석 모델링 도와 해석결과는 Fig. 4에 나타내었으며, 수치해석의 결과

분석은 감압정이 설치되지 않은 조건과 동일한 위치에서 간 극수압을 중점적으로 분석하였고 평가된 간극수압은 Table 4에 나타내었다.

(a) Numerical analysis modeling

(b) Numerical analysis result

Relief Well

Fig. 4. Numerical analysis modeling and result on earth fill dam with relief well

Table 4. Numerical analysis results (Pore-pressure at	downstream for	undation ground of e	earth fill dam	with relief	well)
---	----------------	----------------------	----------------	-------------	-------

	Dam condition		Heigh	nt = 30m,	Incline =	1:5.0			Heigh	t = 30m,	Incline =	1:4.0	
Classification	Dam mat.		Dam for	undation r	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	18.5	18.56	18.9	20.06	21.71	21.93	18.5	18.56	18.9	20.06	21.71	21.93
pressure	1.0E-07	18.5	18.5	18.56	18.9	20.06	21.71	18.5	18.5	18.56	18.9	20.06	21.71
(kPa)	1.0E-08	18.49	18.49	18.5	18.56	18.9	20.06	18.49	18.49	18.5	18.56	18.9	20.06
	Dam condition		Heigh	t = 30m,	Incline =	1:3.0			Heigh	t = 30m,	Incline =	1:2.0	
Classification	Dam mat.		Dam for	undation r	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	20.34	20.36	20.73	22.33	24.08	24.32	22.22	22.23	22.76	25.2	27.36	27.63
pressure	1.0E-07	20.34	20.35	20.36	20.73	22.33	24.08	22.22	22.22	22.23	22.76	25.2	27.36
(kPa)	1.0E-08	20.34	20.34	20.35	20.36	20.73	22.33	22.22	22.22	22.22	22.23	22.76	25.2
	Dam condition		Heigh	t = 20m,	Incline =	1:5.0			Heigh	t = 20m,	Incline =	1:4.0	
Classification	Dam mat.		Dam for	undation r	naterial (k	, m/sec)			Dam for	undation r	naterial (k	, m/sec)	
	(k, m/sec)	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08	1.0E-03	1.0E-04	1.0E-05	1.0E-06	1.0E-07	1.0E-08
Pore-	1.0E-06.	18.13	18.15	18.44	19.78	21.53	21.76	18.73	18.74	19.06	20.65	22.49	22.73
pressure	1.0E-07	18.13	18.13	18.15	18.44	19.78	21.53	18.73	18.73	18.74	19.06	20.65	22.49
(kPa)	1.0E-08	18.12	18.12	18.13	18.15	18.44	19.78	18.73	18.73	18.73	18.74	19.06	20.65
	Dam condition		Heigh	nt = 20m,	Incline =	1:3.0			Heigh	t = 20m,	Incline =	1:2.0	
Classification	Dam condition Dam mat.		Heigh Dam for	nt = 20m, undation r	Incline = naterial (k	1:3.0 , m/sec)			Heigh Dam fou	t = 20m, undation r	Incline = naterial (k	1:2.0 , m/sec)	
Classification	Dam condition Dam mat. (k, m/sec)	1.0E-03	Heigh Dam for 1.0E-04	t = 20m, undation r 1.0E-05	Incline = material (k 1.0E-06	1:3.0 , m/sec) 1.0E-07	1.0E-08	1.0E-03	Heigh Dam fou 1.0E-04	t = 20m, andation r 1.0E-05	Incline = naterial (k 1.0E-06	1:2.0 , m/sec) 1.0E-07	1.0E-08
Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 19.61	Heigh Dam for 1.0E-04 19.61	nt = 20m, undation r 1.0E-05 19.98	Incline = naterial (k 1.0E-06 21.92	1:3.0 , m/sec) 1.0E-07 23.93	1.0E-08 24.18	1.0E-03 21.03	Heigh Dam fou 1.0E-04 21.01	t = 20m, andation r 1.0E-05 21.42	Incline = naterial (k 1.0E-06 23.95	1:2.0 , m/sec) 1.0E-07 26.31	1.0E-08 26.61
Classification Pore- Pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07	1.0E-03 19.61 19.61	Heigh Dam for 1.0E-04 19.61 19.61	nt = 20m, undation r 1.0E-05 19.98 19.61	Incline = naterial (k 1.0E-06 21.92 19.98	1:3.0 , m/sec) 1.0E-07 23.93 21.92	1.0E-08 24.18 23.93	1.0E-03 21.03 21.03	Heigh Dam fou 1.0E-04 21.01 21.03	t = 20m, indation r 1.0E-05 21.42 21.01	Incline = naterial (k 1.0E-06 23.95 21.42	1:2.0 , m/sec) 1.0E-07 26.31 23.95	1.0E-08 26.61 26.31
Classification Pore- Pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08	1.0E-03 19.61 19.61 19.6	Heigh Dam for 1.0E-04 19.61 19.61	nt = 20m, undation r 1.0E-05 19.98 19.61 19.61	Incline = naterial (k 1.0E-06 21.92 19.98 19.61	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98	1.0E-08 24.18 23.93 21.92	1.0E-03 21.03 21.03 21.02	Heigh Dam fou 1.0E-04 21.01 21.03 21.02	t = 20m, and ation r $1.0E-05$ 21.42 21.01 21.03	Incline = naterial (k 1.0E-06 23.95 21.42 21.01	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42	1.0E-08 26.61 26.31 23.95
Classification Pore- Pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 19.61 19.61 19.6	Heigh Dam for 1.0E-04 19.61 19.61 19.61 Heigh		Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline =	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0	1.0E-08 24.18 23.93 21.92	1.0E-03 21.03 21.03 21.02	Heigh Dam fou 1.0E-04 21.01 21.03 21.02 Heigh	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m,	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline =	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0	1.0E-08 26.61 26.31 23.95
Classification Pore- Pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat.	1.0E-03 19.61 19.61 19.6	Heigh Dam for 1.0E-04 19.61 19.61 19.61 Heigh Dam for	nt = 20m, undation r 1.0E-05 19.98 19.61 19.61 nt = 10m, undation r	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec)	1.0E-08 24.18 23.93 21.92	1.0E-03 21.03 21.03 21.02	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec)	1.0E-08 26.61 26.31 23.95
Classification Pore- Pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec)	1.0E-03 19.61 19.61 19.6 1.0E-03	Heigh Dam for 1.0E-04 19.61 19.61 19.61 Heigh Dam for 1.0E-04	nt = 20m, undation r 1.0E-05 19.98 19.61 19.61 19.61 nt = 10m, undation r 1.0E-05	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07	1.0E-08 24.18 23.93 21.92 1.0E-08	1.0E-03 21.03 21.03 21.02 1.0E-03	Heigh Dam fou 1.0E-04 21.01 21.03 21.02 Heigh Dam fou 1.0E-04	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r 1.0E-05	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07	1.0E-08 26.61 26.31 23.95 1.0E-08
Classification Pore- Pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 19.61 19.61 19.6 1.0E-03 17.26	Heigh Dam for 1.0E-04 19.61 19.61 19.61 Heigh Dam for 1.0E-04 17.25	nt = 20m, undation r 1.0E-05 19.98 19.61 19.61 19.61 nt = 10m, undation r 1.0E-05 17.44	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11	1.0E-03 21.03 21.03 21.02 1.02 1.0E-03 17.61	Heigh Dam fou 1.0E-04 21.01 21.03 21.02 Heigh Dam fou 1.0E-04 17.6	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r 1.0E-05 17.81	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79
Classification Pore- Pressure (kPa) Classification Pore- Pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07	1.0E-03 19.61 19.61 19.6 1.0E-03 17.26 17.27	Heigh Dam for 1.0E-04 19.61 19.61 19.61 19.61 Heigh Dam for 1.0E-04 17.25 17.26	$\begin{array}{r} \text{nt} = 20\text{m},\\ \text{undation r}\\ \hline 1.0\text{E-05}\\ \hline 19.98\\ \hline 19.61\\ \hline 19.61\\ \hline 19.61\\ \text{nt} = 10\text{m},\\ \text{undation r}\\ \hline 1.0\text{E-05}\\ \hline 17.44\\ \hline 17.25\\ \end{array}$	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85	1.0E-03 21.03 21.03 21.02 1.0E-03 17.61 17.62	Heigh Dam fou 1.0E-04 21.01 21.03 21.02 Heigh Dam fou 1.0E-04 17.6 17.61	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r 1.0E-05 17.81 17.6	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54	1.0E-08 26.61 23.95 1.0E-08 21.79 21.53
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08	1.0E-03 19.61 19.61 19.6 19.6 19.6 19.6 19.6 19	Heigh Dam for 1.0E-04 19.61 19.61 19.61 Heigh Dam for 1.0E-04 17.25 17.26	t = 20m, undation r $1.0E-05$ 19.98 19.61 19.61 19.61 at = 10m, undation r $1.0E-05$ 17.44 17.25 17.26	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97	1.0E-03 21.03 21.03 21.02 1.02 1.0E-03 17.61 17.62 17.62	Heigh Dam fou 1.0E-04 21.01 21.03 21.02 Heigh Dam fou 1.0E-04 17.61 17.61	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r 1.0E-05 17.81 17.6 17.61	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81 17.6	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79 21.53 19.54
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa)	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 19.61 19.61 19.6 19.6 19.6 1.0E-03 17.26 17.27 17.27	Heigh Dam for 1.0E-04 19.61 19	t = 20m, undation r 1.0E-05 19.98 19.61 19.61 19.61 nt = 10m, undation r 1.0E-05 17.44 17.25 17.26 nt = 10m,	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25 Incline =	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44 1:3.0	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97	1.0E-03 21.03 21.03 21.02 1.0E-03 17.61 17.62 17.62	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for 1.0E-04 17.6 17.61 17.62 Heigh	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 $t = 10m,$ indation r 1.0E-05 17.81 17.6 17.61 $t = 10m,$	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81 17.6 Incline =	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81 1:2.0	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79 21.53 19.54
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition	1.0E-03 19.61 19.61 19.6 19.6 19.6 19.6 19.6 19	Heigh Dam for 1.0E-04 19.61 19.61 19.61 19.61 Heigh Dam for 1.0E-04 17.25 17.26 17.26 Heigh Dam for	t = 20m, undation r 1.0E-05 19.98 19.61 19.61 19.61 undation r 1.0E-05 17.44 17.25 17.26 at = 10m, undation r	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25 Incline = naterial (k	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44 1:3.0 , m/sec)	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97	1.0E-03 21.03 21.03 21.02 1.02 1.0E-03 17.61 17.62 17.62	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for 1.0E-04 17.61 17.61 17.62 Heigh Dam for	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 $t = 10m,$ indation r 1.0E-05 17.81 17.6 17.61 $t = 10m,$ indation r	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81 17.6 Incline = naterial (k	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81 1:2.0 , m/sec)	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79 21.53 19.54
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa) Classification	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-06. 1.0E-06. 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam condition	1.0E-03 19.61 19.61 19.6 19.6 19.6 19.6 19.6 1.0E-03 1.0E-03	Heigh Dam for 1.0E-04 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 1.0E-04	$\begin{array}{r} \text{nt} = 20\text{m},\\ \text{undation r}\\ 1.0\text{E-05}\\ 19.98\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ \text{nt} = 10\text{m},\\ \text{undation r}\\ 1.0\text{E-05}\\ 17.44\\ 17.25\\ 17.26\\ \text{nt} = 10\text{m},\\ \text{undation r}\\ 1.0\text{E-05}\\ \end{array}$	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25 Incline = naterial (k 1.0E-06	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44 1:3.0 , m/sec) 1.0E-07	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97 1.0E-08	1.0E-03 21.03 21.03 21.02 1.0E-03 17.61 17.62 17.62 17.62 1.0E-03	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for 1.0E-04 17.61 17.62 Heigh Dam for 1.0E-04	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 t = 10m, indation r 1.0E-05 17.61 17.61 it = 10m, indation r 1.0E-05	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 Incline = naterial (k 1.0E-06	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81 1:2.0 , m/sec) 1.0E-07	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79 21.53 19.54 1.0E-08
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa) Classification Pore-	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06.	1.0E-03 19.61 19.61 19.6 19.6 19.6 19.6 19.6 1.0E-03 17.27 17.27 17.27 17.27	Heigh Dam for 1.0E-04 19.61 19.61 19.61 19.61 19.61 19.61 19.61 10E-04 1.0E-04 17.25 17.26 17.26 17.26 Heigh Dam for 1.0E-04 1.0E-04 18.1	$\begin{array}{r} \text{nt} = 20\text{m},\\ \text{undation r}\\ 1.0\text{E-05}\\ 19.98\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 19.61\\ 10\text{m},\\ 1.0\text{E-05}\\ 17.44\\ 17.25\\ 17.26\\ 17.26\\ \text{nt} = 10\text{m},\\ \text{undation r}\\ 1.0\text{E-05}\\ 18.28\\ \end{array}$	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25 Incline = naterial (k 1.0E-06 20.27	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44 1:3.0 , m/sec) 1.0E-07 22.48	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97 1.0E-08 22.78	1.0E-03 21.03 21.03 21.02 1.0E-03 17.61 17.62 17.62 1.0E-03 1.0E-03 18.86	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for 1.0E-04 17.61 17.62 Heigh Dam for 1.0E-04 1.0E-04 18.83	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 $t = 10m,$ indation r 1.0E-05 17.81 17.61 it = 10m, indation r 1.0E-05 19.01	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81 17.6 Incline = naterial (k 1.0E-06 21.38	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81 1:2.0 , m/sec) 1.0E-07 23.89	1.0E-08 26.61 23.95 1.0E-08 21.79 21.53 19.54 1.0E-08 24.25
Classification Pore- Pressure (kPa) Classification Pore- Pressure (kPa) Classification Pore- Pressure	Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 1.0E-08 Dam condition Dam mat. (k, m/sec) 1.0E-06. 1.0E-07 Dam mat. (k, m/sec) 1.0E-06. 1.0E-06. 1.0E-07	1.0E-03 19.61 19.61 19.6 19.6 19.6 19.6 19.6 10.2 10.2 17.27 17.27 17.27 17.27 17.27 17.27 17.27 17.27 17.27 17.27	Heigh Dam for 1.0E-04 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 19.61 10E-04 17.25 17.26 17.26 17.26 17.26 17.26 17.26 17.26	nt = 20m, $1.0E-05$ 19.98 19.61 19.61 19.61 19.61 $nt = 10m,$ $1.0E-05$ 17.44 17.25 17.26 $nt = 10m,$ $ndation r$ $1.0E-05$ 18.28 18.1	Incline = naterial (k 1.0E-06 21.92 19.98 19.61 Incline = naterial (k 1.0E-06 18.97 17.44 17.25 Incline = naterial (k 1.0E-06 20.27 18.28	1:3.0 , m/sec) 1.0E-07 23.93 21.92 19.98 1:5.0 , m/sec) 1.0E-07 20.85 18.97 17.44 1:3.0 , m/sec) 1.0E-07 22.48 20.27	1.0E-08 24.18 23.93 21.92 1.0E-08 21.11 20.85 18.97 1.0E-08 22.78 22.48	1.0E-03 21.03 21.03 21.02 1.02 1.0E-03 17.61 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62	Heigh Dam for 1.0E-04 21.01 21.03 21.02 Heigh Dam for 1.0E-04 17.61 17.62 Heigh Dam for 1.0E-04 18.83 18.86	t = 20m, indation r 1.0E-05 21.42 21.01 21.03 $t = 10m,$ indation r 1.0E-05 17.81 17.6 17.61 it = 10m, indation r 1.0E-05 19.01 18.83	Incline = naterial (k 1.0E-06 23.95 21.42 21.01 Incline = naterial (k 1.0E-06 19.54 17.81 17.6 Incline = naterial (k 1.0E-06 21.38 19.01	1:2.0 , m/sec) 1.0E-07 26.31 23.95 21.42 1:4.0 , m/sec) 1.0E-07 21.53 19.54 17.81 1:2.0 , m/sec) 1.0E-07 23.89 21.38	1.0E-08 26.61 26.31 23.95 1.0E-08 21.79 21.53 19.54 1.0E-08 24.25 23.89

4. 분석 및 고찰

Table 3과 4에는 감압정이 설치되지 않은 조건의 필 댐과 설치된 필 댐에서 하류부 제체 선단부의 기초지반에 작용하 는 간극수압 분석 결과가 제시되어 있다. Table 3과 같이 필 댐 제체의 성토재료와 기초지반의 투수계수가 1×10³cm/sec 조건에서는 제체의 경사가 1:5.0에서 2.0으로 급경사로 변화 함에 따라 기초지반에서 작용하는 간극수압이 48.06kPa에 서 57.73kPa로 약 20.1%가 증가하는 것으로 평가되었고, 동 일한 경사로 형성되었을 때 필댐의 높이가 30m에서 10m로 작아지는 경우 기초지반에서 작용하는 간극수압은 48.06kPa 에서 44.85kPa로 약 6.7%가 감소하는 것으로 평가되었다.

또한 Table 4와 같이 감압정이 설치되었을 때는 하류부 제체 선단 기초지반에서 작용하는 간극수압을 크게 감소시 킬 수 있는 것으로 분석되었는데, 필 댐 제체의 성토재료와 기초지반의 투수특성이 같은 조건에서는 제체의 경사가 1:5.0 에서 2.0으로 급경사로 변화함에 따라 기초지반에서 작용하 는 간극수압이 18.5kPa에서 22.2kPa로 약 20%가 증가하는 것으로 평가되었고, 동일한 경사로 형성되었을 때 필댐의 높 이가 30m에서 10m로 작아지는 경우 기초지반에서 작용하 는 간극수압은 18.5kPa에서 17.26kPa로 약 6.6%가 감소하 는 것으로 평가되었다.

반면에 감압정이 설치되지 않은 필 댐과 감압정이 설치

된 조건을 비교해보면, 제체의 기하학적 특성과 역학적 성 질이 동일한 조건에서 필댐의 하류부 제체 선단 기초지반에 서 작용하는 간극수압은 48.06kPa에서 18.5kPa로 44.85kPa 에서 22.2kPa로 최소 약 50.5%, 최대 약 61.5%의 간극수압 저감효과가 있는 것으로 확인되었다.

Table 3에 나타낸 바와 같이 필댐의 경우에는 댐의 높이, 경사와 같은 기하학적 조건과 축조재료 및 기초지반의 재료 특성에 따라 침투수를 저감시키는 효과를 가지고 있지만, 하류부 제체 선단부의 기초지반에 작용하는 간극수압을 기 준으로 볼 때 제체의 기하학적 형상이나 재료자체 만으로는 침투수를 저감관리하는 효과는 크다고 볼 수 없다. 이러한 이유 때문에 최근의 댐 설계기준에서는 설계당시부터 압밀 그라우팅과 커튼그라우팅을 계획하도록 권장하고 있고, 기 존의 노후화 된 필댐의 경우에는 그라우팅으로 기초지반의 침투수를 저감시키도록 적용해 왔다.

본 연구에서 중점적으로 확인하고자 한 균질형 필댐에 설치된 감압정의 효과는 Fig. 3의 (b)와 Fig. 4의 (b)에 나타 나 있다. 감압정이 설치되지 않은 조건에서는 침투수가 하 류부 제체 선단부에서 유출되는 것으로 평가되었으나 감압 정이 설치된 조건에서는 침투수가 감압정의 하부로 유도되 어 제체 선단부에서 침투수 유출이 방지되는 것으로 모사되 었다.

Journal of the Korean Geo-Environmental Society Vol 21, Issue 2, February 2020 >> 11

는데, Fig. 5 및 6에 나타낸 바와 같이 필 댐의 높이나 경사 등과 같은 기하학적 조건이 동일한 조건에서는 기초지반 및 성토재료의 투수특성에 따라 필 댐 하류부 제체의 선단 기 초지반에서 작용하는 간극수압이 조금씩 차이가 나지만 최 대 간극수압은 대체로 유사한 값으로 평가되고 있다. 반면 에 Fig. 5 및 6의 (a)와 (b) 그리고 (c)와 (d)에 비교한 바와 같이 감압정의 설치 유, 무에 따라 비교하면 최대 간극수압 은 크게 감소되는 것으로 평가되었다. 따라서 균질형 필댐 에서는 파이핑 파괴를 유발할 수 있는 양압력을 감소시키기 위해서 댐의 기하학적인 조건이나 재료의 투수특성을 이용 하여 침투수를 처리하는 방법보다는 감압정을 이용하여 필 댐의 하류부 제체 선단에 작용하는 간극수압을 저감시키는 방법이 더 효과적인 것으로 확인되었다. 아울러 동일한 댐 의 기하학적 조건과 재료의 투수특성 조건일 경우, 동일한 지점에서 작용하는 간극수압 수치해석 결과를 이용하여 간 극수압 저감효과를 분석하였으며 이는 Fig. 7에 나타내었다. Fig. 7의 결과를 살펴보면, 기초지반의 투수계수가 1.0×10⁻³ m/sec~1.0×10⁻⁶m/sec인 자갈, 모래 등의 조립질 토사인 경 우에는 제체의 높이, 경사도에 상관없이 감압정에 의한 간

극수압 저감효과가 최소 약 61%, 최대 약 62%로 분석되었 으며, 기초지반의 투수계수가 1.0×10⁶m/sec 이하인 실트질 모래, 실트 및 점토 등의 세립토에서는 감압정에 의한 간극 수압 저감 효과가 약 최소 약 55%, 최대 약 62%로 분석되

Fig. 7. Pore-pressure reduction ratio of relief well

었고 간극수압 저감효과는 댐 제체의 높이, 경사도와 같은 기하학적 조건에 따라 차이가 나는 것으로 확인되었다.

5. 결론 및 제언

본 연구에서는 소규모 필 댐에 있어 감압정 설치에 의한 댐 제체에 작용하는 양압력 감소와 침투수 처리 효과를 수 치해석으로 분석한 결과 다음과 같은 결론을 얻었다.

 (1) 감압정이 설치된 조건과 설치되지 않은 조건에서 원지 반에 작용하는 간극수압은 큰 차이가 나는 것으로 평가 되었으며, 감압정이 설치되는 경우 댐의 기하학적 형상 과 댐 축조재료 및 기초지반의 투수계수에 따라서도 원 지반에 작용하는 간극수압을 크게 감소시킬 수 있는 것 으로 판단된다.

- (2) 기초지반의 투수계수가 1.0×10⁻³m/sec~1.0×10⁻⁶m/sec인 자갈, 모래 등의 조립질 토사인 경우에는 제체의 높이, 경사도에 상관없이 감압정에 의한 간극수압 저감효과 가 최소 약 61%, 최대 약 62%, 기초지반의 투수계수가 1.0×10⁻⁶m/sec 이하인 실트질 모래, 실트 및 점토 등의 세립토에서는 감압정에 의한 간극수압 저감효과가 최 소 약 55%, 최대 약 62%로 분석되었다. 또한 간극수압 저감 효과는 댐 제체의 높이, 경사도와 같은 기하학적 조건에 따라 차이가 있는 것으로 판단되었다.
- (3) 본 연구에서는 균질형 필 댐에 설치되는 감압정의 효과 를 정량적으로 파악하고자 수치해석 기법을 이용하여 감압정의 침투수 처리 효과를 확인하였다. 감압정의 효 과를 확인하는데 의미가 있지만 감압정의 직경, 설치 위치 및 심도 등의 후속 연구가 뒤따라야 할 것으로 판 단된다.

감사의 글

이 논문은 안동대학교 기본연구지원사업에 의하여 연구 되었음.

References

- Dachler, R. (1936), Grundwasserstromung, Julius Springer, Vienna, 141 p (In Germany).
- 2. Forcheimer, P. H. (1914), Hydraulik, Teubner, Berlin, 566 p (In Germany).
- Huibregtse, K. R. and Moser, J. H. (1976), Handbook for sampling and sample preservation of water and wasterwater, EPA-600/4-76-049, U. S. Environmental Protection Agency, Cincinnati, Ohio, 258 p.
- Schwartz, F. W. and Zhang, H. (2003), Fundamental of ground water, John Wiley & Sons, Inc. New York, pp. 220~226.
- U.S. Army Corps of Enginners (1992), Design, construction and maintenance of relief wells, EM 1110-2-1914, Department of the Army U.S. Army Corps of Engineers, Washington, pp. 2-1~3-7.