DOI QR코드

DOI QR Code

Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane

Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가

  • Im, Kwang Seop (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Tae Han (Pure Envirech Co. Ltd.) ;
  • Jang, Jae Young (Pure Envirech Co. Ltd.) ;
  • Nam, Sang Yong (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 임광섭 (경상대학교 나노신소재융합공학과) ;
  • 김태한 ((주) 퓨어엔비텍) ;
  • 장재영 ((주) 퓨어엔비텍) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2020.04.27
  • Accepted : 2020.04.29
  • Published : 2020.04.30

Abstract

The purpose of this study was to identify the cleaning efficiency of fouled multi-bore hollow fiber membranes after purification of contaminated water. The PSf (polysulfone) based hollow fiber membrane manufactured by Pure & B Tech Co., Ltd. Was used in this study. The antifouling characteristics during the water treatment were studied using bovine serum albumin (BSA) as a model compound and the chemical resistance was evaluated after long-term impregnation in sodium hypochlorite (NaOCl) solution and Citric acid to understand the long term stability of the membranes. Water permeability and mechanical strength of the membranes after prolonged chemical exposure was measured to observe the change in mechanical stability and long term performance of the membrane. moreover, the recovery efficiency was also evaluated after chemical enhanced backwashing of a membrane contaminated with bovine serum albumin. The PSf hollow fiber membrane exhibited excellent chemical resistance, and it was confirmed that the efficiency of sodium hypochlorite was high as a result of chemical enhanced backwashing.

본 연구는 (주)퓨어엔비텍에서 제조한 multi-bore 형태의 중공사 막을 이용하여 오염된 원수의 투과 후 오염된 막의 재사용을 위해 화학적 세정효율에 대해 파악하고자 하였으며 이를 위해 제조된 중공사 막의 재료는 내화학성이 좋은 PSf(polysulfone) 소재를 사용하였다. 실험은 소혈청 알부민(BSA)을 이용한 내오염성 평가 및 염기성 용액인 차아염소산나트륨(NaOCl), 산성 용액인 구연산(citric acid)을 이용해 장기 함침하여 내화학성 평가를 진행하였다. 시간에 따른 수투과도와 인장강도를 측정하여 분리막의 기계적 강도와 성능의 감소에 대한 결과를 관찰하였다. 이후 소혈청 알부민으로 오염된 막의 화학적 용액에 따른 역세척 후 회복효율을 파악하였다. PSf 중공사 막은 뛰어난 내화학성을 가졌으며 화학적세척결과 차아염소산나트륨의 효율이 높음을 확인하였다.

Keywords

References

  1. S. M. Lee and S. S. Kim, "Structural changes of PVDF membranes by phase separation control", Korea Chem. Eng. Res., 54, 57 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  2. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  3. B. M. Jun, E. T. Yun, S. W. Han, N. T. P. Nga, H. G. Park, and Y. N. Kwon, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  4. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  5. C. H. Woo, "Research trend of membrane for water treatment by analysis of patent and papers publication", Appl. Chem. Eng., 28, 410 (2017). https://doi.org/10.14478/ace.2017.1059
  6. KMAC, "Trend analysis report: Establishment of overseas entry strategy of water treatment industry by target market", Sejong University, Yooshin Co., p. 139 (2017).
  7. J. Lee, J. K. Lee, S. Uhm, and H. J. Lee, "Electrochemical technologies: Water treatment", Appl. Chem. Eng., 22, 235 (2011).
  8. M. M. Pendergast and E. M. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  9. H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, "Research and development trends of ion exchange membrane processes", KIC News., 14, 21 (2011).
  10. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioil, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016). https://doi.org/10.1016/j.memsci.2016.02.050
  11. K. M. Kyung and J. Y. Park, "Effect of pH in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon". Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  12. H. N. Jang, S. J. Kim, Y. T. Lee, and K. H. Lee, "Progress of nanofiltration hollow fiber membrane", Appl. Chem. Eng., 24, 456 (2013).
  13. C. H. Yun, J. H. Kim, K. W. Lee, and S. H. Park, "Water treatment application of a large pore micro-filtration membrane and its problems", Membr. J., 24, 194 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.194
  14. S. H. Han and I. S. Chang, "Comparison of filtration resistances according to membrane cleaning methods", J. Environ. Sci. Int., 25, 817 (2016). https://doi.org/10.5322/JESI.2016.25.6.817
  15. J. M. Yang, C. W. Park, B. H. Lee, and S. Y. Kim, "Textile wastewater treatment by MF-UF combined membrane filtration", Clean Tech., 12, 151 (2006).
  16. T. Mohammadi, S. S. Madaeni, and M. K. Moghadam, "Investigation of membrane fouling", Desalination, 153, 155 (2002). https://doi.org/10.1016/S0011-9164(02)01118-9
  17. W. S. Ang, S. Y. Lee, and M. Elimelech, "Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membrane", J. Membr. Sci., 272, 198 (2006) https://doi.org/10.1016/j.memsci.2005.07.035
  18. A. Maartens, E. P. Jacobs, and P. Swart, "UF of pulp and paper effluent: membrane fouling prevention and cleaning", J. Membr. Sci., 209, 81 (2002). https://doi.org/10.1016/S0376-7388(02)00266-1
  19. J. H. Kim, "State of art of membrane processes for water re-use", Membr. J., 10, 175 (2000).
  20. D. L. Cho and J. Lee, "Membrane fouling in mircofiltration process and its control by surface modification of membrane", Polym. Korea., 21, 142 (1997).
  21. B. H. Moon, K. S. Yoo and C. C. Ho, "Fouling study with binary protein mixtures in microfilration", Korean Chem. Eng. Res., 43, 236(2005).
  22. E. D. Mackey, "Fouling of ultrafiltration and nanofiltration membranes by dissolbed organic matter, dissertation, Rice University", Envi. Sci. & Eng., Houston (1999)
  23. N. Porecelli and S. Judd, "Chemical cleaning of potable water membranes: A review", Sep. Purif. Technol., 71, 137 (2010). https://doi.org/10.1016/j.seppur.2009.12.007
  24. E. J. Lee, J. S. Kwon, S. H. Park, W. H. Ji, and A. Jang, "Influence of sodium hypochlorite used for chemical enhanced backwashing on biophysical treatment in MBR", Desalination, 316, 104 (2013). https://doi.org/10.1016/j.desal.2013.02.003
  25. T. Y. Son, J. S. Yun, S. I. Han, and S. Y. Nam, "Electrokinetics evaluation of poly(styrene-ethylene-butylene-styrene) based anion exchange membrane", Membr. J., 27, 399 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.399
  26. B. Beykal, M. Herzberg, Y. Oren, and M. S. Mauter, "Influence of surface charge on the rate, extent, and structure of adsorbed bovine serum albumin to gold electrodes", J. Colloid. Interface. Sci., 460, 321 (2015). https://doi.org/10.1016/j.jcis.2015.08.055