Selection of Optimal Varieties Suitable for Indoor Cultivation Considering the Growth and Functional Content of Agastache Species

배초향의 생장과 기능성 물질 함량을 고려한 실내재배 적합 최적 품종 선정

  • Do, Jong Won (Integrated Water Management Supporting Department, Water Resources Planning Office, Korea Rural Community Corporation) ;
  • Noh, Seung Won (Department of Horticultural Science, Chungnam National University) ;
  • Bok, Gwon Jeong (Department of Horticultural Science, Chungnam National University) ;
  • Lee, Hyun Joo (Department of Horticultural Science, Chungnam National University) ;
  • Lee, Jong Won (Department of Horticulture Environment System, Korea National College of Agriculture and Fisheries) ;
  • Park, Jong Seok (Department of Horticultural Science, Chungnam National University)
  • 도종원 (한국농어촌공사 수자원기획처 통합물관리지원단) ;
  • 노승원 (충남대학교 농업생명과학대학 원예학과) ;
  • 복권정 (충남대학교 농업생명과학대학 원예학과) ;
  • 이현주 (충남대학교 농업생명과학대학 원예학과) ;
  • 이종원 (한국농수산대학 원예환경시스템학과) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2020.04.14
  • Accepted : 2020.04.22
  • Published : 2020.04.30


The objective of this study was to select the right species among Agastache in the family Lamiaceae as the result of growth analysis and functional substance analysis. Among 22 species of Agastache, five species (Agastache cana, Agastache foeniculum, Agastache rugosa 'Spike Blue', Agastache rugosa 'Spike Snow', Agastache rupestris) were selected by referring to United States Department of Agriculture (USDA)'s plant hardiness zone area and Korea's one based on USDAs. These plants were cultured at 24 ± 1℃ and 18 ± 1℃ (day and night temperatures, respectively) and 65 ~ 75% relative humidity in a hydroponic culture system for 4 weeks. In terms of growth analysis experiment, stem length, root length, leaf width, leaf area, leaf number, SPAD value, and fresh and dry weights of shoots and roots were measured. The results showed that A. rugosa SS and A. rugosa SB have a higher overall balance value than other species. When compared functional substance value (rosmarinic acid, tilianin, and acacetin) of five species, A. rugosa SS and A. rugosa SB are significantly higher than other species in Agastache. It seems to be directly proportional to the growth analysis results. When considering the growth and functional substance part comprehensively, A. rugosa SS and A. rugosa SB are the most optimal high-value species among Agastache.

본 연구는 Agastache 속 여러 종에서 국내 자생지 환경요건에 적합하면서 생육 및 기능성 물질 함량면에서 가장 최적의 종을 선정하고자 하였다. 첫째, 11종의 배초향(Agastache)속 종자를 구입하여 미국 농무성(USDA) 식물 내한성 지도(plant hardiness zone map) 및 국내 식물 내한성 지도를 참고하여 11종에서 생육 및 기능성 분석을 할 5종을 선정하였다. 둘째, 배초향(Agastache) 속 5개 품종인 A. cana, A. foeniculum, A. rugosa 'Spike Blue', A. rugosa 'Spike Snow', A. rupestris에 대해 초장, 엽장, 엽폭, 엽면적, 엽수, SPAD, 지상부 생체중 및 건물중, 지하부 생체중 및 건물중 등의 생육 분석을 실시하였다. 생육 분석 결과, A. rugosa SB 및 A. rugosa SS 종에서 전체적으로 균형 있게 높은 수치를 나타냄을 알 수 있어, 생육 부문에서는 A. rugosa 계통의 품종이 다른 품종에 비해서 유리하다고 볼 수 있다. 셋째, rosmarinic acid, tilianin, acacetin 성분에 대해 단위 중량당 함량 및 식물체 1중당 함량 등의 기능성물질 함량 분석을 실시하였다. 기능성 물질 분석 결과, A. rugosa 계통 종에서 기능성 물질 및 항산화물질 함량이 유의적으로 높았으며, 이는 생육 결과값과 정비례적인 연계성이 크다고 보여진다. 따라서, 배초향(Agastache)속 종에 대한 생육과 기능성 부분을 종합적으로 고려할 때, A. rugosa SS 및 A. rugosa SB 등 A. rugosa 계통이 가장 최적의 고부가가치 작물로 적합할 것이라고 판단된다.



본 연구는 농림축산식품부(MAFRA)의 재원으로 농림식품기술기획평가원(IPET)의 농생명기술개발사업(317005-04-4)의 지원에 의해 수행되었음.


  1. Ahn, B. and C.B. Yang. 1991. Volatile flavor components of Bangah (Agastache rugosa O. Kuntze) Herb. Korean Journal of Food Science and Technology. 23:582-586.
  2. Asensi-Fabado, M.A., A. Olivan, and S. Munne-Bosch. 2013. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environ. Exp. Bot. 94:57-65.
  3. Bourgaud, F., A. Gravot, S. Milesi, and E. Gontier. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science. 161:839-851.
  4. Cuvelier, M.E., H. Richard, and C. Berset. 1996. Antioxidative activity and phenolic composition of pilot plant and commercial extracts of sage and rosemary. Journal of the American Oil Chemists Society. 73:645-652.
  5. Chen, J.H., and C.T. Ho. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45:2374-2378.
  6. Chae, S.C., S.W. Lee, J.K. Kim, W.T. Park, M.R. Uddin, H.H. Kim, and S.U. Park. 2013. Variation of carotenoid content in Agastache rugosa and Agastache foeniculum. Asian J. Chem. 25:4364-4366.
  7. Ellis, B.E., and G.H.N. Towers. 1970. Biogenesis of rosmarinic acid in Mentha. The Biochemical Society. 118:291-297.
  8. Fehr, W.R., B.K. Lawrence, and T.A. Thompson. 1981. Critical stages of development for defoliation of soybean. Crop. Sci. 21:257-261.
  9. Han, D.S., Y.C. Kim, S.E. Kim, H.S. Ju, and Byun, S.J. 1987. Studies on the diterpene constituent of the root of Agastache rugosa O. Kuntze. Korean Journal of Pharmacognosy. 18:99-102.
  10. Hay, R.K.M., and P.G. Waterman. 1993. Volatile oil crops. Longman Scientific & Technical. p.185.
  11. Hong, J.J., J.H. Choi, S.R. Oh, H.K. Lee, J.H. Park, K.Y. Lee, J.J. Kim, T.S. Jeong, and G.T. Oh. 2001. Inhibition of cytokine induced vascular cell adhesion molecule 1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. Federation of European Biochemical Societies Letters. 495:142-147.
  12. Hakkim, F.L., C.G. Shankar, and S. Girija. 2007. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. Journal of Agricultural and Food Chemistry. 55:9109-9117.
  13. Jones, J.W., E. Dayan, L.H. Allen, H. Van Kuelen, and H. Challa. 1991. A dynamic tomato growth and yield model. Amer. Soc. Agricultral. Eng. 34:663-672.
  14. Ko, S.R., K.J. Choi, and Y.H. Kim. 1996. Comparative study on the essential oil components of Panax species. Korean Society of Ginseng. 20:42-48.
  15. Kim, S.J., G.J. Bok, J.S. Park. 2018. Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. Protected Horticulture and Plant Factory. 27:260-268.
  16. Lee, C.L., Y.H. Choi, and Y.H. Kim. 1994. Essential oils in aerial parts of Agastache rugosa O. Kuntze. Korean Journal of Medicinal Crop Science. 2:168-173.
  17. Lee, H.K., and S.R. Oh. 2002. Bioactive compounds and anti-atherosclerotic effect of Agastache rugosa. Korean Society of Crop Science Conference. 77-81.
  18. Lee, I.H., J.I. Park, G.H. Jung, and I.S. Nou. 2010. Variaton of characteristics and photosynthetic rates among the species of leaf mustard (Brassica juncea). Journal of Life Science. 20:1127-1133.
  19. Lim, S.S., J.M. Jang, W.T. Park, M.R. Uddin, S.C. Chae, H.H. Kim and S.U. Park. 2013. Chemical composition of essential oils from flower and leaf of Korean mint, Agastache rugosa. Asian Journal of Chemistry. 25:4361-4363.
  20. Lee, K.W., H.J Je, T.H. Jung, Y.L. Lee, J.H. Choi, H.J. Hwang, and K.O. Shin. 2018. Comparison of components and antioxidant activity of cherry, aronia, and maquiberry. The Korean Journal of Food and Nutrition. 31:729-736.
  21. Lam, V.P., S.J. Kim, H.J. Lee, and J.S. Park. 2019. Root pruning increased bioactive compounds of hydroponicallygrown Agastache rugosa in a greenhouse. Korean Society for Horticultural Science. 60:647-657.
  22. Nam, K.H., J.H. Choi, Y.J. Seo, Y.M. Lee, Y.S. Won, M.R. Lee, M.N. Lee, J.G. Park, Y.M. Kim, H.C. Kim, and C.H. Lee. 2006. Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Experimental & Molecular Medicine. 38:445-452.
  23. Niu, G.H., and D.S. Rodriguez. 2006. Relative salt tolerance of five herbaceous perennials. American Society for Horticultural Science. 41:1493-1497.
  24. Rao, S.R., and G.A. Ravishankar. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances. 20:101-153.
  25. Rha, Y.A., M.S. Choi and S.J. Park. 2014. Antioxidant and anti-adipogenic effects of fermentation Rhus verniciflua. Culinary Schience & Hospitality Research. 20:137-147.
  26. Sung, D.K., D.C. Shin, Y. Son, and Y.C. Kim. 1990. Photosynthesis and some characteristics in different stages of soybeen cultivars (G. max). The Research Reports of the RDA Upland and Indus. Crops, Korea. 32:32-37.
  27. Takeda, H., M. Tsuji, J. Miyamoto, and T. Matsumiya. 2002. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior or mice exposed to conditioned fear stress. Psychopharmacology. 164:233-235.
  28. Zielinska, S., and A. Matkowski. 2014. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 13:391-416.