DOI QR코드

DOI QR Code

Effects of Herbal Prescription on Obesity Related Hormones in Rats with Estrogen Deficiency

에스트로겐이 결핍된 흰쥐에서 한약혼합물이 비만 관련 호르몬에 미치는 영향

  • 박정식 (가천대학교 한의과대학) ;
  • 임정설 (가천대학교 한의과대학) ;
  • 임형호 (가천대학교 한의과대학) ;
  • 황귀서 (가천대학교 한의과대학)
  • Received : 2019.06.25
  • Accepted : 2020.01.13
  • Published : 2020.01.31

Abstract

Objectives Depletion of ovarian function after menopause in women induces estrogen deficiency leading to increased fat and decreased muscle mass. In this study, we examined the effect of herbal medicines by measuring hormone expression in muscle tissue of estrogen-deficient rats induced by ovariectomy. Methods Ovariectomy was performed to induce estrogen deficiency, and mice were given herbal prescription (HP) for 6 weeks. Estrogen-deficient rats were divided into two groups: one group (HPH) which were orally administered HP 200 mg/kg and the other group (HPL) administered HP 40 mg/kg. Weight changes in both groups were measured using polymerase chain reaction (PCR). After extraction of the femoral muscles in mice, the expression of the leptin, lipoprotein lipase (LPL), diacyl glycerol acyltransferase (DGAT)1, peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, NADH dehydrogenase (NDH), farnesyl diphosphate farnesyltransferase (FDFT)1, lanosterol synthase (LSS), phosphatidylethanolamine N-methyltransferase (PEMT), and peroxiredoxin (Prdx6) were measured using PCR. Results HP increased the expression of leptin, LPL, DGAT1, PGC-1α, NDH, FDFT1, LSS, PEMT, and Prdx6. HP affects body fat metabolism and is effective in improving menopausal obesity and obesity complications caused by estrogen deficiency. However, HP does not affect the expression of tumor necrosis factor-α and 3-hydroxy-3-methylglutaryl-CoA reductase, and thus will not be effective in obesity-related metabolic diseases. Conclusions HP is thought to inhibit weight gain by regulating hormone expression related to glucose metabolism and lipid metabolism in muscle tissue of estrogen-deficient rats.

Keywords

References

  1. Park HS, Kim MY, Lee SW, Shin ES. Diet and eating behavior in obese patients. Kor J Fam Med. 1994;15(6):353-61.
  2. Dawood MY. Hormone replacement therapy, current regimens. The female patient. Obstetrics & Gynecology. 1992;2:5-18.
  3. Bush TL, Miller TV. Effect of pharmacologic agents used during menopause. Menopause physiology and pharmacology. Chicago:Year Book Medical Publisher. 1987:185-205.
  4. Kim KJ, Lee WJ, Lee SJ, Ahn NY, Oh HR, Shin YJ, Park JS. Health status and lifestyle including diet, exercise, and daily activities in obese adults. J Kor Sports Med. 2005;23(1):54-63.
  5. Garfinkel L. Overweight and cancer. Ann Intern Med. 1985;103:1034-6. https://doi.org/10.7326/0003-4819-103-6-1034
  6. Lee HG. Obesity related diseases. J Nutr Health. 1990;23(5):341-6.
  7. Cooke PS, Naaz A. Role of estrogens in adipocyte development and function. Experimental Biology and Medicine. 2004;229(11):1127-35. https://doi.org/10.1177/153537020422901107
  8. Yeo E. Menopause, aging and obesity. Kor J Obes. 2002;11(3):289-98.
  9. Yang YG. Naegyeongsomun-yeakhae. Seoul:Daesung Print. 1990:235-43, 356-61.
  10. Kim JM, Choi SM, Yang DH, An HD. The effect of oral administration at herbal medicines in animal models on obesity: a review of animal study reports published in Korea after 2010. J Korean Med Rehabil. 2017;27(3):13-32. https://doi.org/10.18325/jkmr.2017.27.3.13
  11. Shin HJ, Yoo JE, Jung EH, Yoo DY. Effects of Pueraria lobata on body weight and gene expression in obese rats muscle with estrogen deficiency. J Korean Obstet Gynecol. 2012;25(3):71-84. https://doi.org/10.15204/JKOBGY.2012.25.3.071
  12. Shin YS, Hwang GS. The effects of Pueraria lobata extract on gene expression in liver tissue of rat with estrogen-deficient obesity. J Korean Prevent Med. 2014;18(3):117-28.
  13. Baek SE, Baek JY, Kang KS, Yoo JE. Effects of Pueraria lobata on obesity related hormones in rats with estrogen deficiency. J Korean Med Obes Res. 2017;17(2):111-8. https://doi.org/10.15429/jkomor.2017.17.2.111
  14. Lee HI, Yoo DY, Yo JE. Effects of Hwanggimacmundongtang on body weight and gene expression in obese rats with estrogen deficiency. J Korean Obstet Gynecol. 2018;31(2):49-67. https://doi.org/10.15204/JKOBGY.2018.31.2.049
  15. Im KR, Kim MJ, Jung TK, Yoon KS. Analysis of isoflavonoid contents in astragalus membranaceus bunge cultivated in different areas and at various ages. KSBB Journal. 2010;25:271-6.
  16. Zhang XH, Liu SX, Xu M. The research of phytoestrogen and chinese herb. Tradit Chin Drug Res Clin Pharmacol. 2002;13(4):261-4. https://doi.org/10.3321/j.issn:1003-9783.2002.04.026
  17. Calpe-Berdiel L, Escola-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis. 2009;203:18-31. https://doi.org/10.1016/j.atherosclerosis.2008.06.026
  18. Oh YJ , Kwon SH, Choi KB, Kim TS, Yeo IH. Effect of vinegar made with hydroponic-cultured panax ginseng C. A. Meyer on body weight and lipid metabolism in high-fat diet-fed mice. J Korean Food Sci and Tech. 2014;46(6):743-9. https://doi.org/10.9721/KJFST.2014.46.6.743
  19. Shin JH, Lee JH, Kang KW, Hwang JH. Selection and mechanism of anti-obesity agents from natural products based on anti-angiogenesis. KSBB Journal. 2009;24:122-30.
  20. Kim MH. Effect of Lycii fructus extracts on serum lipids and bone collagen contents in ovariectomized rats. J Physiology & Pathology in Korean Med. 2007;21(1):111-6.
  21. Jeong BS, Shin MK. Traditional medicine encyclopedia. Seoul:Yoenglim Print. 1998:177-8, 407-8, 440-3, 448-9, 663-4, 906-8.
  22. Li MD. Leptin and beyond: an odyssey to the central control of body weight. Yale J Biol Med. 2011;84(1):1-7.
  23. Wang LN, Yu Q, Xiong Y, Liu LF, Zhang Z, Zhang XN, Cheng H, Wang B. Lipoprotein lipase gene polymorphisms and risks of childhood obesity in Chinese preschool children. Eur J Pediatr. 2011;170(10):1309-16. https://doi.org/10.1007/s00431-010-1355-8
  24. Nakagami H, Morishita R. Obesity and gastrointestinal hormones-dual effect of angiotensin II receptor blockade and a partial agonist of PPAR-${\gamma}$. Curr Vasc Pharmacol. 2011;9(2):162-6. https://doi.org/10.2174/157016111794519291
  25. Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta. 2010;1804(8):1676-83. https://doi.org/10.1016/j.bbapap.2009.11.023
  26. Chan MY, Zhao Y, Heng CK. Sequential responses to high-fat and high-calorie feeding in an obese mouse model. Obesity (Silver Spring). 2008;16(5):972-8. https://doi.org/10.1038/oby.2008.32
  27. Yamamoto T, Habata Y, Matsumoto Y, Yasuhara Y, Hashimoto T, Hamajyo H, Anayama H, Fujii R, Fuse H, Shintani Y, Mori M. Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta. 2011;1810(9):853-62. https://doi.org/10.1016/j.bbagen.2011.05.004
  28. Yamamoto T, Yamaguchi H, Miki H, Kitamura S, Nakada Y, Aicher TD, Pratt SA, Kato K. A novel coenzyme A: diacylglycerol acyltransferase 1 inhibitor stimulates lipid metabolism in muscle and lowers weight in animal models of obesity. Eur J Pharmacol. 2011;650(2-3):663-72. https://doi.org/10.1016/j.ejphar.2010.10.040
  29. Birch AM, Buckett LK, Turnbull AV. DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Devel. 2010;13(4):489-96.
  30. Andreasen CH, Mogensen MS, Borch-Johnsen K, Sandbaek A, Lauritzen T, Almind K, Hansen L, Jorgensen T, Pedersen O, Hansen T. Studies of CTNNBL1 and FDFT1 variants and measures of obesity: analyses of quantitative traits and case-control studies in 18,014 Danes. BMC Med Genet. 2009;10:1-9. https://doi.org/10.1186/1471-2350-10-1
  31. Brannian J, Eyster K, Greenway M, Henriksen C, Teslaa K, Diggins M. Progressive obesity leads to altered ovarian gene expression in the Lethal yellow mouse: a microarray study. J Ovarian Res. 2009;10:1-9.
  32. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528-31. https://doi.org/10.1038/nature09968
  33. Hirokawa J, Sakaue S, Tagami S, Kawakami Y, Sakai M, Nishi S, Nishihira J. Identification of macrophage migration inhibitory factor in adipose tissue and its induction by tumor necrosis $factor-{\alpha}$. Biochem Biophys Res Commun. 1997;235(1):94-8. https://doi.org/10.1006/bbrc.1997.6745
  34. Zhang W, Ambati S, Della-Fera MA, Choi YH, Baile CA, Andacht TM. Leptin modulated changes in adipose tissue protein expression in ob/ob mice. Obesity (Silver Spring). 2011;19(2):255-61. https://doi.org/10.1038/oby.2010.166
  35. White RE, Darkow DJ, Lang JL. Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism. Circ Res. 1995;77(5):936-42. https://doi.org/10.1161/01.RES.77.5.936
  36. Wellman GC, Bonev AD, Nelson MT, Brayden JE. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca2+-dependent K+ channels. Circ Res. 1996;79(5):1024-30. https://doi.org/10.1161/01.RES.79.5.1024
  37. Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOSand cyclooxygenase dependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279(2):511-9. https://doi.org/10.1152/ajpheart.2000.279.2.H511
  38. Geary N, Asarian L. Estradiol increases glucagon's satiating potency in ovariectomized rats. Am J Physiol Heart Circ Physiol. 2000;279(2):511-9. https://doi.org/10.1152/ajpheart.2000.279.2.H511
  39. Palin SL, McTernan PG, Anderson LA, Sturdee DW, Barnett AH, Kumar S. 17Beta-estradiol and anti-estrogen ICI: compound 182, 780 regulate expression of lipoprotein lipase and hormone-sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism. 2003;52(4):383-8. https://doi.org/10.1053/meta.2003.50088
  40. Misso ML, Murata Y, Boon WC, Jones ME, Britt KL, Simpson ER. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology. 2003;144(4):1474-80. https://doi.org/10.1210/en.2002-221123
  41. Ramsay TG. Fat cells. Endocrinol Metab Clin North Am. 1996;25(4):847-9. https://doi.org/10.1016/s0889-8529(05)70358-3
  42. Kopelman PG. Effects of obesity on fat topography: metabolic and endocrine determinants. In: Kopelman PG, Stock MJ, eds. Clinical obesity. 1st ed. Oxford: Blackwell Science. 1998.158-75.
  43. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B. Estrogen controls lipolysis by up-regulating alpha2A adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab. 2004;89(4):1869-78. https://doi.org/10.1210/jc.2003-031327
  44. Jensen MD. Lipolysis: contribution from regional fat. Annu Rev Nutr. 1997;17:127-39. https://doi.org/10.1146/annurev.nutr.17.1.127
  45. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29-33. https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  46. Valdez CM, Phelix CF, Smith MA, Perry G, Santamaria F. Modeling cholesterol metabolism by gene expression profiling in the hippocampus. Mol Biosyst. 2011;7(6):1891-901. https://doi.org/10.1039/c0mb00282h