DOI QR코드

DOI QR Code

Antibacterial Activity and Inhibition of Resistance in Methicillin-resistant Staphylococcus aureus by Maneung-hwan Ethanol Extract

만응환(萬應丸) 에탄올 추출물의 메티실린 내성 포도상구균에 대한 항균활성 및 내성억제 효과

  • Na, Yong-su (Department of Third Medicine of Korean Medicine, Professional Graduate School of Korean Medicine, Wonkwang University) ;
  • Kim, Jong-gyu (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Wonkwang University) ;
  • Song, Yung-sun (Department of Third Medicine of Korean Medicine, Professional Graduate School of Korean Medicine, Wonkwang University)
  • 나용수 (원광대학교 한의학전문대학원 제3의학과) ;
  • 김종규 (원광대학교 한의과대학 한방재활의학교실) ;
  • 송용선 (원광대학교 한의학전문대학원 제3의학과)
  • Received : 2019.12.21
  • Accepted : 2020.01.13
  • Published : 2020.01.31

Abstract

Objectives In this study, we investigated the antimicrobial activity of a 70% ethanol extract of Maneung-hwan (MEH), which is prescribed by practitioners of oriental medicine for use against methicillin-resistant Staphylococcus aureus (MRSA). Methods The antibacterial activity of MEH against MRSA strains was evaluated using the disc diffusion method, broth microdilution method (minimal inhibitory concentration, MIC), checkerboard dilution test, and time-kill test. The mechanism of action of MEH was investigated by bacteriolysis using detergents or ATPase inhibitors Additionally, mRNA and protein expression were investigated by quantitative reverse transcription-polymerase chain reaction and western blot assay, respectively. Results The MIC of MEH was 25~1,600 ㎍/mL against all the tested bacterial strains. We showed that MEH extract exerts strong antibacterial activity. In the checkerboard dilution test, the fractional inhibitory concentration index of MEH in combination with antibiotics indicated synergism or partial synergism against S. aureus. The time-kill study indicated that the growth of the tested bacteria was considerably inhibited after a 24-h treatment with MEH and selected antibiotics. To measure the cell membrane permeability, MEH (3.9 ㎍/mL) was combined with Triton X-100 (TX) at various concentrations N,N-dicyclohexylcarbodimide (DCCD) was also tested as an ATPase inhibitor. TX and DCCD cooperation against S. aureus exhibited synergistic action. Accordingly, the antimicrobial activity of MEH in the context of cell membrane rupture and ATPase inhibition was assessed. Additionally, the expression of genes and proteins associated with resistance was reduced after exposing MRSA to MEH. Conclusions These results suggest that MEH possesses antibacterial activity and acts as a potential natural antibiotic against MRSA.

Keywords

References

  1. Walter J, Noll I, Feig M, Weiss B, Claus H, Werner G, Eckmanns T, Hermes J, Abu Sin M. Decline in theproportion of methicillin resistance among Staphylococcus aureus isolatesfrom non-invasive samples and in outpatient settings, and changes in theco-resistance profiles: an analysis of data collected within the Antimicro-bial Resistance Surveillance Network, Germany 2010 to 2015. BMC Infect Dis. 2017;17(1):169. https://doi.org/10.1186/s12879-017-2271-6
  2. Kraker ME, Davey PG, Grundmann H; BURDEN study group. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8(10):e1001104. https://doi.org/10.1371/journal.pmed.1001104
  3. Centre for Disease Control and Prention. Antibiotic resistance threats in the United States. Centre for Disease Control and Prevention:2013.
  4. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2009. In: Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2010.
  5. Otto CC, Cunningham TM, Hansen MR, Haydel SE. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2010;9:26. https://doi.org/10.1186/1476-0711-9-26
  6. Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One. 2016;11(2):e0149541. https://doi.org/10.1371/journal.pone.0149541
  7. Al-Habib A, Al-Saleh E, Safer AM, Afzal M. Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J Toxicol Sci. 2010;35:357-64. https://doi.org/10.2131/jts.35.357
  8. Kim KJ, Yu HH, Cha JD, Seo SJ, Choi NY, You YO. Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus. Phytother Res. 2005;19(7):599-604. https://doi.org/10.1002/ptr.1660
  9. Saad A, Fadli M, Bouaziz M, Benharref A, Mezrioui NE, Hassani L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine. 2010;17(13):1057-60. https://doi.org/10.1016/j.phymed.2010.03.020
  10. Ettefagh KA, Burns JT, Junio HA, Kaatz GW, Cech NB. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med. 2011;77(8):835-40. https://doi.org/10.1055/s-0030-1250606
  11. Yoon JI, Bajpai VK, Kang SC. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food Chem Toxicol. 2011;49(1):109-14. https://doi.org/10.1016/j.fct.2010.10.004
  12. Zhou L, Li D, Wang J, Liu Y, Wu J. Antibacterial phenolic compounds from the spines of Gleditsia sinensis Lam. Nat Prod Res. 2007;21(4):283-91. https://doi.org/10.1080/14786410701192637
  13. Heo Jun. Dongyibogam. Kyeongnam:Dongyibogam Publisher. 2005:437, 1205-6.
  14. El-Saied MA, Sobeh M, Abdo W, Badr OM, Youssif LT, Elsayed IH, Osman SM, Wink M. Rheum palmatum root extract inhibits hepatocellular carcinoma in rats treated with diethylnitrosamine. J Pharm Pharmacol. 2018;70(6):821-9. https://doi.org/10.1111/jphp.12899
  15. Hwang DS, Gu PS, Kim N, J ang YP, Oh MS. Effects of Rhei Undulati Rhizoma on lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Environ Toxicol. 2018;33(1):23-31. https://doi.org/10.1002/tox.22463
  16. Kwon OJ, Kim MY, Shin SH, Lee AR, Lee JY, Seo BI, S hin MR, Choi HG, K im J A, Min B S, K im GN, Noh JS, Rhee MH, Roh SS. Antioxidant and anti-inflammatory effects of Rhei Rhizoma and Coptidis Rhizoma mixture on reflux esophagitis in rats. Evid Based Complement Alternat Med. 2016;2016:2052180.
  17. Xie HC, Shang J. Study on the extraction process of total anthraquinones in Radix et Rhizoma Rhei and their antilipemic effects. Afr J Tradit Complement Altern Med. 2014;11(2):358-62. https://doi.org/10.4314/ajtcam.v11i2.22
  18. Arokiyaraj S, Vincent S, Saravanan M, Lee Y, Oh YK, Kim KH. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2017;45(2):372-9. https://doi.org/10.3109/21691401.2016.1160403
  19. Yang ZC, Wang BC, Yang XS, Wang Q, Ran L. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf B Biointerfaces. 2005;41(2-3):79-81. https://doi.org/10.1016/j.colsurfb.2004.10.033
  20. Liu M, Peng W, Qin R, Yan Z, Cen Y, Zheng X, Pan X, Jiang W, Li B, Li X, Zhou H. The direct anti-MRSA effect of emodin via damaging cell membrane. Appl Microbiol Biotechnol. 2015;99(18):7699-709. https://doi.org/10.1007/s00253-015-6657-3
  21. Pharmacology of Korean Medicine. The textbook compilation committee of pharmacology of Korean's medical schools in nations. Seoul:Shinil books. 2010:550-90.
  22. Bhandare AM, Vyawahare NS, Kshirsagar AD. Anti-migraine effect of Areca Catechu L. nut extract in bradykinin- induced plasma protein extravasation and vocalization in rats. J Ethnopharmacol. 2015;171:121-4. https://doi.org/10.1016/j.jep.2015.05.052
  23. Bhandare AM, Kshirsagar AD, Vyawahare NS, Hadambar AA, Thorve VS. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food Chem Toxicol. 2010;48(12):3412-7. https://doi.org/10.1016/j.fct.2010.09.013
  24. Chusri S, Settharaksa S, Chokpaisarn J, Limsuwan S, Voravuthikunchai SP. Thai herbal formulas used for wound treatment: a study of their antibacterial potency, anti-inflammatory, antioxidant, and cytotoxicity effects. J Altern Complement Med. 2013;19(7):671-6. https://doi.org/10.1089/acm.2012.0625
  25. Jung HJ, Kang JH, Choi S, Son YK, Lee KR, Seong JK, Kim SY, Oh SH. Pharbitis Nil (PN) induces apoptosis and autophagy in lung cancer cells and autophagy inhibition enhances PN-induced apoptosis. J Ethnopharmacol. 2017;208:253-63. https://doi.org/10.1016/j.jep.2017.07.020
  26. Nguyen HT, Yu NH, Park AR, Park HW, Kim IS, Kim JC. Antibacterial activity of pharbitin, isolated from the seeds of Pharbitis nil, against various plant pathogenic bacteria. J Microbiol Biotechnol. 2017;27(10):1763-72. https://doi.org/10.4014/jmb.1706.06008
  27. Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria that grow aerobically; approved standard. 8th ed. Wayne: Clinical and Laboratory Standards Institute. 2009.
  28. Shahverdi AR, Fakhimi A, Zarrini G, Demehan G, Iranshahi M. Galbanic acid from Ferula szowitsiana enhanced the antibacterial activity of penicillin G and cephalexin against Staphylococcus aureus. Biol Pharm Bull. 2007;30(9):1805-7. https://doi.org/10.1248/bpb.30.1805
  29. Cha JD, Lee JH, Choi KM, Choi SM, Park JH. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid Based Complement Alternat Med. 2014;2014:450572.
  30. Choi JG, Kang OH, Obiang-Obounou B, Lee YS, Chae HS, Oh YC, Sohn DH, Park H, Choi HG, Kim SG, Shin DW, Kwon DY. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog Dis. 2010;7(4):435-41. https://doi.org/10.1089/fpd.2009.0434
  31. Mun SH, Joung DK, Kim SB, Park SJ, Seo YS, Gong R, Choi JG, Shin DW, Rho JR, Kang OH, Kwon DY. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus. Foodborne Pathog Dis. 2014;11(3):234-9. https://doi.org/10.1089/fpd.2013.1627
  32. Choi JG, Kang OH, Chae HS, Obiang-Obounou B, Lee YS, Oh YC, Kim MS, Shin DW, Kim JA, Kim YH, Kwon DY. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Appl Biochem Biotechnol. 2010;160(8):2467-74. https://doi.org/10.1007/s12010-009-8698-5
  33. Sit PS, Teh CS, Idris N, Sam IC, Syed Omar SF, Sulaiman H, Thong KL, Kamarulzaman A, Ponnampalavanar S. Prevalence ofmethicillin-resistant Staphylococcus aureus (MRSA) infection and the molecu-lar characteristics of MRSA bacteraemia over a two-year period in a tertiaryteaching hospital in Malaysia. BMC Infect Dis. 2017;17(1):274. https://doi.org/10.1186/s12879-017-2384-y
  34. Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis. 2007;45(Suppl 3):191-5.
  35. Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycinintermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23:99-139. https://doi.org/10.1128/CMR.00042-09
  36. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycininduced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol. 2012;68:1243-55. https://doi.org/10.1007/s00228-012-1259-9
  37. Micek ST. Alternatives to vancomycin for the treatment of methicillinresistant Staphylococcus aureus infections. Clin Infect Dis. 2007;45:S184-90. https://doi.org/10.1086/519471
  38. Meziane-Cherif D, Saul FA, Moubareck C, Weber P, Haouz A, Courvalin P, Perichon B. Molecular basis of vancomycin dependence in VanA-type Staphylococcus aureus VRSA-9. J Bacteriol. 2010;192(20):5465-71. https://doi.org/10.1128/JB.00613-10
  39. Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(12):4800-7. https://doi.org/10.1128/AAC.48.12.4800-4807.2004
  40. Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014;66(8):572-7. https://doi.org/10.1002/iub.1289
  41. Bhattacharya PK. Emergence of antibiotic-resistant bacterial strains, Methicillin-resistant Staphylococcus aureus, extended spectrum beta lactamases, and multi-drug resistance is a problem similar to global warming. Rev Soc Bras Med Trop. 2014;47(6):815-6. https://doi.org/10.1590/0037-8682-0139-2014
  42. Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2010;54(5):1670-7. https://doi.org/10.1128/AAC.00019-10
  43. Najar-Peerayeh S, Jazayeri Moghadas A, Behmanesh M. Antibiotic susceptibility and mecA frequency in Staphylococcus epidermidis, Isolated from intensive care unit patients. Jundishapur J Microbiol. 2014;7(8):e11188.
  44. Aedo S, Tomasz A. Role of the stringent stress response in the antibiotic resistance phenotype of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2016;60(4):2311-7. https://doi.org/10.1128/AAC.02697-15
  45. Pence MA, Haste NM, Meharena HS, Olson J, Gallo RL, Nizet V, Kristian SA. Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One. 2015;10(8):e0136605. https://doi.org/10.1371/journal.pone.0136605
  46. Gregory PD, Lewis RA, Curnock SP, Dyke KG. Studies of the repressor (BlaI) of beta-lactamase synthesis in Staphylococcus aureus. Mol Microbiol. 1997;24(5):1025-37. https://doi.org/10.1046/j.1365-2958.1997.4051770.x
  47. Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fanning S. Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol. 2012;78(9):3087-97. https://doi.org/10.1128/AEM.07534-11
  48. J oung DK, L ee YS, Han SH, Lee SW, Cha SW, Mun SH, Kong R, Kang OH, Song HJ, Shin DW, Kwon DY. Potentiating activity of luteolin on membrane permeabilizing agent and ATPase inhibitor against methicillin- resistant Staphylococcus aureus. Asian Pac J Trop Med. 2016;9(1):19-22. https://doi.org/10.1016/j.apjtm.2015.12.004
  49. Liu X, Pai PJ, Zhang W, Hu Y, Dong X, Qian PY, Chen D, Lam H. Proteomic response of methicillin-resistant S. aureus to a synergistic antibacterial drug combination: a novel erythromycin derivative and oxacillin. Sci Rep. 2016;6:19841. https://doi.org/10.1038/srep19841
  50. Choi J G, Choi J Y, Mun SH, Kang OH, Bharaj P, Shin DW, Chong MS, Kwon DY. Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus. Asian Pac J Trop Med. 2015;8(7):538-42. https://doi.org/10.1016/j.apjtm.2015.06.010
  51. Lee SH, Yumnam S, Hong GE, Raha S, Venkatarame Gowda Saralamma V, Lee HJ, Heo JD, Lee SJ, Lee WS, Kim EH, Park HS, Kim GS. Flavonoids of Korean Citrus aurantium L. Induce apoptosis via intrinsic pathway in human hepatoblastoma HepG2 cells. Phytother Res. 2015;29(12):1940-9. https://doi.org/10.1002/ptr.5488
  52. Han DS. Pharmacognosy. Paju:Dong Myeng Publishers. 1995:327.