DOI QR코드

DOI QR Code

Comparisons of 1-Hour-Averaged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations

고해상도 재분석자료와 관측소 1시간 평균 지상 온도 비교

  • Song, Hyunggyu (Department of Earth Science Education, Chungbuk National University) ;
  • Youn, Daeok (Department of Earth Science Education, Chungbuk National University)
  • 송형규 (충북대학교 지구과학교육과) ;
  • 윤대옥 (충북대학교 지구과학교육과)
  • Received : 2020.04.15
  • Accepted : 2020.04.27
  • Published : 2020.04.30

Abstract

Comparisons between two different surface temperatures from high-resolution ECMWF ReAnalysis 5 (ERA5) and Automated Synoptic Observing System (ASOS) observations were performed to investigate the reliability of the new reanalysis data over South Korea. As ERA5 has been recently produced and provided to the public, it will be highly used in various research fields. The analysis period in this study is limited to 1999-2018 because regularly recorded hourly data have been provided for 61 ASOS stations since 1999. Topographic characteristics of the 61 ASOS locations are classified as inland, coastal, and mountain based on Digital Elevation Model (DEM) data. The spatial distributions of whole period time-averaged temperatures for ASOS and ERA5 were similar without significant differences in their values. Scatter plots between ASOS and ERA5 for three different periods of yearlong, summer, and winter confirmed the characteristics of seasonal variability, also shown in the time-series of monthly error probability density functions (PDFs). Statistical indices NMB, RMSE, R, and IOA were adopted to quantify the temperature differences, which showed no significant differences in all indices, as R and IOA were all close to 0.99. In particular, the daily mean temperature differences based on 1-hour-averaged temperature had a smaller error than the classical daily mean temperature differences, showing a higher correlation between the two data. To check if the complex topography inside one ERA5 grid cell is related to the temperature differences, the kurtosis and skewness values of 90-m DEM PDFs in a ERA5 grid cell were compared to the one-year period amplitude among those of the power spectrum in the time-series of monthly temperature error PDFs at each station, showing positive correlations. The results account for the topographic effect as one of the largest possible drivers of the difference between ASOS and ERA5.

본 연구에서는 고해상도 ERA5 재분석자료 중 우리나라 지상 온도 자료의 신뢰성을 검증할 목적으로 종관기상관측소(ASOS) 관측자료와 비교를 수행하였다. 새롭게 생산되어 배포 중인 ERA5 재분석자료는 높은 시·공간적 해상도를 가져 여러 분야에 활용성이 매우 높다. 자료의 분석 기간은 ASOS 61개 관측소가 1999년 이후로 결측률이 매우 낮으며 시간평균 자료를 제공한다는 점을 고려하여 1999-2018년 기간으로 설정하였다. ERA5 격자 자료는 격자 내 90-m 수치표고모델(DEM) 분포로부터 내륙, 해안, 산악 지역에 해당하는 지형학적인 특성에 따라 분류하여 ASOS 지점 자료와 비교되었다. 분석 기간 전체에 대한 평균 지상 온도는 ASOS와 ERA5 모두 공간 분포의 패턴과 값은 큰 차이없이 유사하였다. ASOS와 ERA5의 산점도 비교를 통해 전체 기간, 특히 여름, 겨울 기간에 대해 계절 변동성을 가진다는 특성을 확인할 수 있었으며, 이는 달별 두 자료 사이의 매시간 차이 확률밀도함수(PDF)의 시계열을 통해서도 확인되었다. 두 자료 사이의 차이를 통계지수인 NMB, RMSE를 계산하여 정량화시켰을 때, 각 값에서 지역적인 특성을 보였으나 모든 지수에서 큰 차이가 없다고 판단할 수 있었으며, 상관성을 보기 위해 R과 IOA를 통해 구한 값은 모두 0.99에 근접하였다. 특히 일평균 산출에 있어 1-시간-평균 값 24개를 이용한 일평균의 경우가 최고와 최저온도의 평균을 이용하는 일평균에 비해 오차가 작게 나타났고, 두 자료 사이의 상관성도 높게 나타남을 확인하였다. 두 자료의 차이가 나타나는 원인으로 ERA5 격자 내 지형 효과가 가장 클 것으로 판단하여 수치표고모델을 활용하여 각 지역별 PDF를 이용해 첨도 및 왜도를 구하고, 이를 온도 차이 파워 스펙트럼의 1년 주기 변동 크기와 비교하였다. 그 결과, 양의 상관성을 가졌음을 확인하였다. 이는 지형 효과가 두 자료 차이의 원인이라고 설명하는 결과이다.

References

  1. Choi, K.C., Lim, Y.J., Lee, J.B. et al., 2018, Evaluation of the Simulated PM2.5 Concentrations using Air Quality Forecasting System according to Emission Inventories-Focused on China and South Korea. Journal of Korean Society for Atmospheric Environment, 34(2), 306-320. https://doi.org/10.5572/KOSAE.2018.34.2.306
  2. Ciccarelli, N., von Hardenberg, J., Provenzale, A. et al., 2008, Climate variability in north-western Italy during the second half of the 20th century. Global and Planetary Change, 63(2-3), 185-195. https://doi.org/10.1016/j.gloplacha.2008.03.006
  3. Dee, D.P., Uppala, S.M., Simmons, A.J. et al., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. https://doi.org/10.1002/qj.828
  4. ECMWF (European Centre for Medium-Range Weather Forecasts), IFS documentation. ECMWF, Reading, United Kingdom. https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifsdocumentation (last access: 9 March 2020).
  5. Fealy, R. and Sweeney, J., 2007, Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. International Journal of Climatology, 27(15), 2083-2094. https://doi.org/10.1002/joc.1506
  6. Hans, H., Bill, B., Paul, B., et al., 2019, Global reanalysis:goodbye ERA-Interim, hello ERA5. ECMWF Newsletter No. 159, 17-24. ECMWF (European Centre for Medium-Range Weather Forecasts), Reading, United Kingdom, available at: https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbyeera-interim-hello-era5 (last access: 9 March 2019).
  7. Hennermann, K. and Berrisford, P., 2020, What are the changes from ERA-Interim to ERA5?. https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925 (last access: 14 March 2020).
  8. Kim, M.K., Lee, D.H., and Kim, J.U., 2012, Production and Validation of Daily Grid Data with 1km Resolution in South Korea. Journal of climate research, 8(1), 13-25.
  9. KMA (Korea Meteorological Administration): Automated Synoptic Observing System (ASOS) data. KMA, Seoul, South Korea, available at: https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 (last access: 13 December 2019).
  10. KMA (Korea Meteorological Administration), 1996, ANNUAL CLIMATOLOGICAL REPORT. KMA, Seoul, South Korea, available at: https://www.weather.go.kr/repositary/sfc/pdf/sfc_ann_1996.pdf (last access: 10 April 2020), 242 p.
  11. KMA (Korea Meteorological Administration), 1997, ANNUAL CLIMATOLOGICAL REPORT. KMA, Seoul, South Korea, available at: https://www.weather.go.kr/repositary/sfc/pdf/sfc_ann_1997.pdf (last access: 11 April 2020), 245 p.
  12. KMA (Korea Meteorological Administration), 2019, Climatological statistics guide. KMA, Seoul, South Korea, available at: http://book.kma.go.kr/viewer/MediaViewer.ax?cid=33349&rid=5&moi=5240 (last access: 10 April 2020), 83 p.
  13. Lee, K.W. and Hwang, C.S., 2006, A Consideration on the Spatial Distribution of Checkpoints for the Accuracy Assessment of Digital Elevation Model. The Geographical Journal of Korea, 40(4), 563-572.
  14. Mooney, P.A., Mulligan, F.J., and Fealy, R., 2011, Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. International Journal of Climatology, 31(4), 545-557. https://doi.org/10.1002/joc.2098
  15. Poveda, G., Waylen, P.R., and Pulwarty, R.S., 2006, Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3-27. https://doi.org/10.1016/j.palaeo.2005.10.031
  16. Stammerjohn, S.E., Martinson, D.G., Smith, R.C. et al., 2008, Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Research II, 55(18, 19), 2041-2058. https://doi.org/10.1016/j.dsr2.2008.04.026
  17. Tak, H.M., Kim, S.H., and Son, I., 2013, A study of Distributions and Spatial Properties of Geomorphological Mountain Area. Journal of the Korean Geographical Society, 48(1), 1-18.
  18. Wang, S., McGrath, R., Semmlar, T. et al., 2006, Validation of simulated precipitation patterns over Ireland for the period 1961-2000. International Journal of Climatology, 26(2), 261-266.
  19. WMO (World Meteorological Organization), 1983, Guide to climatological practice. WMO No. 100, WMO, Geneva, Switzerland, 153 p.