DOI QR코드

DOI QR Code

A Study on Performance of Content Store Replacement Algorithms over Vehicular CCN

VCCN에서 Content Store 교체 알고리즘의 성능에 관한 연구

  • 최종인 (서울여자대학교 디지털미디어학과) ;
  • 강승석 (서울여자대학교 디지털미디어학과)
  • Received : 2019.10.30
  • Accepted : 2019.11.24
  • Published : 2020.02.29

Abstract

VANET (Vehicular Ad Hoc Network), an example of an ad hoc vehicular networks, becomes one of the popular research areas together with the self-driving cars and the connected cars. In terms of the VANET implementation, the traditional TCP/IP protocol stack could be applied to VANET. Recently, CCN (Content Centric Networking) shows better possibility to apply to VANET, called VCCN (VANET over CCN). CCN maintains several data tables including CS (Content Store) which keeps track of the currently requested content segments. When the CS becomes full and new content should be stored in CS, a replacement algorithm is needed. This paper compares and contrasts four replacement algorithms. In addition, it analyzes the transmission characteristics in diverse network conditions. According to the simulation results, LRU replacement algorithm shows better performances than the remaining three algorithms. In addition, even the size of CS is small, the network maintains a reasonable transmission performance. As the CS size becomes larger, the transmission rate increases proportionally. The transmission performance decreases when the network is crowded as well as the number of transmission hops becomes large.

자동차를 기반으로 하는 애드 혹 네트워크 중 하나인 Vehicular Ad Hoc Network(VANET)은 자율 주행차와 커넥티드 카 등의 기술 개발과 더불어 많은 연구가 진행 중인 주제 중 하나이다. VANET을 구현하는 경우 기존의 TCP/IP를 이용한 연구도 진행하고 있지만, Content Centric Networking (CCN)을 이용한 VANET over CCN (VCCN) 관련 연구도 다양한 장점으로 인해 높은 실현 가능성을 보여주고 있다. 본 논문은 CCN 노드들이 관리하는 전송관련 정보 테이블 중에서 Content Store(CS)에 할당된 공간이 모두 사용되어 새로운 항목을 추가할 경우 기존의 일부 항목을 교체하는 경우에 사용되는 다양한 교체 알고리즘의 성능을 평가하고 특정 네트워크 상황에서의 전송특성을 분석하였다. 모의실험 결과, LRU 교체 알고리즘의 성능이 다른 세 가지 교체 알고리즘 보다 우수하였다. 또한 CS 의 크기가 작더라도 전송 성능이 일정 수준을 유지하였으며, CS의 크기가 클수록 전송 성능은 그에 비례하여 상승하였다. 네트워크가 혼잡한 경우 또는 전송 노드 사이의 거리가 먼 경우 데이터 전송 성능도 감소하였다.

Keywords

References

  1. Z. Su, Y. Hui, and Q. Yang, "Next Generation Vehicular Networks: A Content Centric Framework", IEEE Wireless Communications, Vol. 24, No. 1, pp. 60-66, February, 2017. https://doi.org/10.1109/MWC.2017.1600195WC
  2. E. Yang, S. Kang, S. Kwon, D. Kim, J. Kim, Y. Lee, H. Hwang, and Y. Chang, "Analysis of Autonomous Driving Vehicle and Korea's Competitiveness Strategy", The Journal of the Convergence on Culture Technology (JCCT), Vol. 3, No. 2, pp. 49-54, May, 2017. https://doi.org/10.17703/JCCT.2017.3.2.49
  3. S. Yeon, Y. Chae, and S. Kang, "A Study on Mitigation Methods for Broadcast Storm Problem over Vehicular CCN", The Journal of the Convergence on Culture Technology (JCCT), Vol. 5, No. 1, pp. 429-434, February, 2019. https://doi.org/10.17703/JCCT.2019.5.1.429
  4. S. Ahmed, S. Bouk, and D. Kim, "RUFS: Robust Forwarder Selection in Vehicular Content Centric Networks", IEEE Communications Letters, Vol. 19, No. 9, pp. 1616-1619, September, 2015. https://doi.org/10.1109/LCOMM.2015.2451647
  5. H. Maryam, M. Shah, S. Arshad, A. Siddiqa, and A. Wahid, "TFS: A Reliable Routing Protocol for Vehicular Content Centric Networks", International Conference on Emerging Technologies (ICET), pp. 1-6, December, 2017.
  6. F. Karnadi, Z. Mo, and K. Kan, "Rapid Generation of Realistic Mobility Model for VANET", IEEE Wireless Communications and Networking Conference, pp. 2506-2511, March, 2007.
  7. ns-3, Ns-3 manual: Release ns-3.29 (https://www.nsnam.org/releases/ns-3-30), August, 2019.
  8. E. Feukeu, and T. Zuva, "Mitigation of a Broadcast Storm Problem in a Vehicular Ad Hoc Network (VANETs)", IEEE International Symposium on Parallel and Distributed Processing with Applications, pp. 1289-1295, December, 2017.
  9. K. Hasan, and S. Jeong, "CCN-based vehicular communications", International Conference on Information Networking, pp. 926-929, January, 2018.
  10. M. Kharbutli, and R. Sheikh, "LACS: A Locality-Aware Cost-Sensitive Cache Replacement Algorithm", IEEE Transactions on Computers, Vol. 63, No. 8, pp. 1975-1987, August,. 2014. https://doi.org/10.1109/TC.2013.61
  11. K. Zheng, and J. Wang, "Page Weight-Based Buffer Replacement Algorithm for Flash-Based Databases", International Conference on Computer Technology, Electronics and Communication, pp. 466-470, December, 2017.
  12. S. Mastorakis, A. Afanasyev, L. Moiseenko, and L. Zhang, "ndnSIM 2.0: A new version of the NDN simulator for NS-3", Technical Report NDN-0028, NDN, 2015.