DOI QR코드

DOI QR Code

Preliminary analysis and design of the heat exchangers for the Molten Salt Fast Reactor

  • Received : 2019.01.28
  • Accepted : 2019.07.11
  • Published : 2020.01.25

Abstract

Despite the recent growth of interest in molten salt reactor technology and the crucial role which heat transfer plays in the design of power reactors, specific studies on the design of heat exchangers for the Molten Salt Fast Reactor have not yet been performed. In this work we deliver a preliminary but quantitative analysis of the intermediate heat exchangers, based on reference design data from the SAMOFAR H2020-Euratom project. Two different promising reference technologies are selected for study thanks to their compactness features, the Printed Circuit and the Helical Coil heat exchangers. We present preliminary design results for each technology, based on simplified design tools. Results highlight the limiting effects of the compactness constraints imposed on the fuel salt inventory and the allowed size. Large pressure drops on both flow sides are to be expected, with negative consequences on pumping power and natural circulation capabilities. The small size required for the flow channels also represents possible fabrication issues and safety concerns regarding channel blockage.

Keywords

References

  1. P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (1970) 118-136, https://doi.org/10.13182/NT8-2-118.
  2. Generation IV International Forum 2016 Annual Report, 2016. https://www.gen-4.org/gif/upload/docs/application/pdf/2017-07/gifannual_report_2016_final12july.pdf.
  3. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319, https://doi.org/10.1016/J.PNUCENE.2014.02.014.
  4. S.H. Yoon, H.C. NO, G.B. Kang, Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs, Nucl. Eng. Des. 270 (2014) 334-343, https://doi.org/10.1016/J.NUCENGDES.2014.01.006.
  5. I.H. Kim, X. Zhang, R. Christensen, X. Sun, Design study and cost assessment of straight, zigzag, S-shape, and OSF PCHEs for a FLiNaK-SCO2 Secondary Heat Exchanger in FHRs, Ann. Nucl. Energy 94 (2016) 129-137, https://doi.org/10.1016/J.ANUCENE.2016.02.031.
  6. N. Bartel, M. Chen, V.P. Utgikar, X. Sun, I.-H. Kim, R. Christensen, P. Sabharwall, Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors, Ann. Nucl. Energy 81 (2015) 143-149, https://doi.org/10.1016/J.ANUCENE.2015.03.029.
  7. D.A. Haskins, M.S. El-Genk, CFD analyses and correlation of pressure losses on the shell-side of concentric, helically-coiled tubes heat exchangers, Nucl. Eng. Des. 305 (2016) 531-546, https://doi.org/10.1016/J.NUCENGDES.2016.05.014.
  8. D. Heuer, E. Merle-Lucotte, M. Allibert, M. Brovchenko, V. Ghetta, P. Rubiolo, Towards the thorium fuel cycle with molten salt fast reactors, Ann. Nucl. Energy 64 (2014) 421-429, https://doi.org/10.1016/j.anucene.2013.08.002.
  9. H. Rouch, O. Geoffroy, P. Rubiolo, A. Laureau, M. Brovchenko, D. Heuer, E. Merle-Lucotte, Preliminary thermal-hydraulic core design of the molten salt fast reactor (MSFR), Ann. Nucl. Energy 64 (2014) 449-456, https://doi.org/10.1016/J.ANUCENE.2013.09.012.
  10. C. Fiorina, The Molten Salt Fast Reactor as a Fast-Spectrum Candidate for Thorium Implementation, Politecnico di Milano, 2013.
  11. D. Gerardin,M. Allibert, D. Heuer, A. Laureau, E.Merle-Lucotte, C. Seuvre, Design evolutions of molten salt fast reactor, in: Int. Conf. Fast React. Relat. Fuel Cycles Next Gener. Nucl. Syst. Sustain. Dev. Yekaterinburg, Russ. June 26-29, 2017.
  12. M. Tano, P. Rubiolo, O. Doche, Progress in modeling solidification in molten salt coolants, Model. Simul. Mater. Sci. Eng. 25 (2017) 074001, https://doi.org/10.1088/1361-651X/aa8345.
  13. M. Brovchenko, E. Merle, H. Rouch, F. Alcaro, M. Allibert, M. Aufiero, A. Cammi, S. Dulla, O. Feynberg, L. Frima, O. Geoffroy, V. Ghetta, D. Heuer, V. Ignatiev, J.L. Kloosterman, D. Lathouwers, A. Laureau, L. Luzzi, B. Merk, P. Ravetto, A. Rineiski, P. Rubiolo, L. Rui, M. Szieberth, S. Wang, B. Yamaji, Optimization of the Pre-conceptual Design of the MSFR, 2014.
  14. V. Ignatiev, O. Feynberg, A. Merzlyakov, A. Surenkov, A. Zagnitko, Progress in Development of MOSART Concept with Th Support, 2012, pp. 943-952.
  15. O. Benes, R.J.M. Konings, Molten salt reactor fuel and coolant, in: Compr. Nucl. Mater., 2012, pp. 359-389, https://doi.org/10.1016/B978-0-08-056033-5.00062-8.
  16. D. Southall, R. Le Pierres, S.J. Dewson, Design Considerations for Compact Heat Exchangers, Icapp '08., 2008, pp. 1953-1968.
  17. L. Santini, A. Cioncolini, M.T. Butel, M.E. Ricotti, Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications, Int. J. Heat Mass Transf. 92 (2016) 91-99, https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.012.
  18. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 2007, https://doi.org/10.1016/j.applthermaleng.2011.03.022.
  19. M.A. Ebadian, Z.F. Dong, Forced convection, internal flow in ducts, in: Y.I.C.W.M. Rohsenow, J.P. Hartnett (Eds.), Handb. Heat Transf., 1998, pp. 5.1-5.137.
  20. H. Ito, Friction factors for turbulent flow in curved pipes, J. Basic Eng. 81 (1959) 123-134. https://doi.org/10.1115/1.4008390
  21. ESDU 78031: Internal Forced Convective Heat Transfer in Coiled Pipes, 2001. https://www.esdu.com/cgi-bin/ps.pl?sess=unlicensed_1180605073308jgz&t=doc&p=esdu_78031b. (Accessed 5 June 2018).
  22. A.A. Zukauskas, Heat transfer from tubes in cross flow, Adv. Heat Transf. Acad. Press. 8 (1972) 93-106, https://doi.org/10.1016/S0065-2717(08)70038-8.

Cited by

  1. Preliminary Analysis and Design of the Energy Conversion System for the Molten Salt Fast Reactor vol.12, pp.24, 2020, https://doi.org/10.3390/su122410497
  2. Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle vol.53, pp.2, 2021, https://doi.org/10.1016/j.net.2020.07.007
  3. Analysis of printed circuit heat exchanger (PCHE) for Small modular molten salt reactor (MSR) vol.753, pp.1, 2020, https://doi.org/10.1088/1755-1315/753/1/012046
  4. Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor vol.53, pp.7, 2021, https://doi.org/10.1016/j.net.2021.01.021