DOI QR코드

DOI QR Code

Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient

  • Omerasevic, Mia (University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Materials Science) ;
  • Lukic, Miodrag (Institute of Technical Sciences of the Serbian Academy of Sciences and Arts) ;
  • Savic-Bisercic, Marjetka (University of Belgrade, Vinca Institute of Nuclear Sciences, Chemical Dynamics Laboratory) ;
  • Savic, Andrija (University of Belgrade, Institute for Multidisciplinary Research) ;
  • Matovic, Ljiljana (University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Materials Science) ;
  • Bascarevic, Zvezdana (University of Belgrade, Institute for Multidisciplinary Research) ;
  • Bucevac, Dusan (University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Materials Science)
  • Received : 2018.12.25
  • Accepted : 2019.07.01
  • Published : 2020.01.25

Abstract

A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 ℃ to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 ℃ for 3 h. Heterogeneity of samples obtained at 950 ℃ was determined using scanning electron microscopy. The pollucite hot-pressed at 950 ℃ had low linear thermal expansion coefficient of ~4.67 × 10-6 K-1 in the temperature range from 100 to 1000 ℃.

Keywords

References

  1. P. Bosch, D. Caputo, B. Liguori, C. Colella, Safe trapping of Cs in heat-treated zeolite matrices, J. Nucl. Mater. 324 (2004) 183-188, https://doi.org/10.1016/j.jnucmat.2003.10.001.
  2. R. Cortes-Martinez, M.T. Olguin, M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination 258 (2010) 164-170, https://doi.org/10.1016/j.desal.2010.03.019.
  3. S.S. Nenadovic, M.T. Nenadovic, I.S. Vukanac, M.O. Omerasevic, L.M. Kljajevic, Radiological hazards of $^{137}Cs$ in cultivated and undisturbed areas, Nucl. Technol. Radiat. Protect. 26 (2011) 115-118, https://doi.org/10.2298/NTRP1102115N.
  4. I. Plecas, A. Peric, A. Kostadinovic, J. Drljaca, S. Glodic, Leaching behavior of $^{60}Co$ and $^{137}Cs$ from spent ion exchange resins in cement matrix, Cement Concr. Res. 327 (2004) 171-174.
  5. I.B. Plecas, R.S. Pavlovic, S.D. Pavlovic, Leaching of $^{60}Co$ and $^{137}Cs$ from spent ion exchange resins in cement - bentonite clay matrix, J. Nucl. Mater. 327 (2004) 699-701, https://doi.org/10.1016/j.jnucmat.2004.02.001.
  6. A. Dyer, D. Keir, Nuclear waste treatments by zeolites, Zeolites 4 (1984) 215-218, https://doi.org/10.1016/0144-2449(84)90026-5.
  7. J.P. Aittola, J. Chyssler, H. Ringberg, Thermal Stability of Ion-Exchange Resins, Studsvik Energitek. AB, 1982.
  8. H. Mimura, T. Kanno, Processing of radioactive waste solution with zeolites (I) : thermal-transformations of Na, Cs and Sr forms of zeolites, Sci. Rept. Res. Inst. 29 (1980) 102-111.
  9. B.X. Gu, L.M. Wang, R.C. Ewing, Effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY, J. Nucl. Mater. 278 (2000) 64-72, https://doi.org/10.1016/S0022-3115(99)00224-X.
  10. A.M. El-Kamash, M.R. El-Naggar, M.I. El-Dessouky, Immobilization of cesium and strontium radionuclides in zeolite-cement blends, J. Hazard Mater. 136 (2006) 310-316, https://doi.org/10.1016/j.jhazmat.2005.12.020.
  11. J.M. Juoi, M.I. Ojovan, W.E. Lee, Microstructure and leaching durability of glass composite wasteforms for spent clinoptilolite immobilisation, J. Nucl. Mater. 372 (2008) 358-366, https://doi.org/10.1016/j.jnucmat.2007.04.047.
  12. A. Dyer, K.Y. Mikhail, The use of zeolites for the treatment of radioactive waste, Mineral. Mag. 49 (1985) 203-210, https://doi.org/10.1180/minmag.1985.049.351.07.
  13. M. Luo, M. Wen, J. Wang, J. Zhu, The study of cooperation solidification of Cs based on ZSM-5 zeolite, Energy Procedia. 39 (2013) 434-442, https://doi.org/10.1016/j.egypro.2013.07.234.
  14. A. Radulovic, V. Dondur, R. Dimitrijevic, D. Arandjelovic, Thermal transformation of Na-LTA zeolite into low-carnegieite: the influence of residual sodium and aluminium species, Thermochim. Acta 511 (2010) 37-42, https://doi.org/10.1016/j.tca.2010.07.022.
  15. R. Dimitrijevic, V. Dondur, A. Kremenovic, Thermally induced phase transformations of Ca-exchanged LTA and FAU zeolite frameworks: rietveld refinement of the hexagonal $CaAl_2Si_2O_8$ diphyllosilicate structure, Zeolites 16 (1996) 294-300, https://doi.org/10.1016/0144-2449(95)00154-9.
  16. R. Dimitrijevic, V. Dondur, N. Petranovic, The high temperature synthesis of $CsAlSiO_4$-ANA, a new polymorph in the system $Cs_2O-Al_2O_3-SiO_2$, J. Solid State Chem. 345 (1991) 335-345.
  17. B. Nedic, A. Kremenovic, V. Dondur, R. Dimitrijevic, Strontium deficient feldspar - structure and X - Ray powder diffraction line broadening analysis, Cryst. Res. Technol. 43 (2008) 266-272, https://doi.org/10.1002/crat.200710974.
  18. M. Omerasevic, J. Ruzic, N. Vukovic, U. Jovanovic, M. Mirkovic, V. Maksimovic, V. Dondur, Removal of Cs ions from aqueous solutions by using matrices of natural clinoptilolite and its safe disposal, Sci. Sinter. 48 (2016) 101-107, https://doi.org/10.2298/SOS1601101O.
  19. C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater. 134 (2010) 65-71, https://doi.org/10.1166/asl.2017.9089.
  20. P. Cappelletti, G. Rapisardo, B. de Gennaro, A. Colella, A. Langella, S.F. Graziano, D.L. Bish, M. de Gennaro, Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites, J. Nucl. Mater. 414 (2011) 451-457, https://doi.org/10.1016/j.jnucmat.2011.05.032.
  21. G.D. Gatta, A. Brundu, P. Cappelletti, G. Cerri, B. de Gennaro, M. Farina, P. Fumagalli, L. Guaschino, P. Lotti, M. Mercurio, New insights on pressure, temperature, and chemical stability of $CsAlSi_5O_{12}$, a potential host for nuclear waste, Phys. Chem. Miner. 43 (2016) 639-647, https://doi.org/10.1007/s00269-016-0823-8.
  22. G.D. Gatta, F. Nestola, T.B. Ballaran, Elastic behavior, phase transition, and pressure induced structural evolution of analcime, Am. Mineral. 91 (2006) 568-578, https://doi.org/10.2138/am.2006.1994.
  23. G.D. Gatta, R. Rinaldi, G.J. McIntyre, G. Nenert, F. Bellatreccia, A. Guastoni, G. Della Ventura, On the crystal structure and crystal chemistry of pollucite, $(Cs,Na)_{16}Al_{16}Si_{32}O_{96}{\cdot}nH(2)O$: a natural microporous material of interest in nuclear technology, Am. Mineral. 94 (2009) 1560-1568, https://doi.org/10.2138/am.2009.3237.
  24. K. Yanagisawa, M. Nishioka, N. Yamasaki, Immobilization of cesium into pollucite structure by hydrothermal hot-pressing, J. Nucl. Sci. Technol. 24 (1987) 51-60, https://doi.org/10.1080/18811248.1987.9735774.
  25. S.A. Gallagher, G.J. McCarthy, Preparation and X-ray characterization of pollucite ($CsA1Si_2O_6$), J. Inorg. Nucl. Chem. 43 (1981) 1773-1777, https://doi.org/10.1016/0022-1902(81)80382-X.
  26. J.H. Yang, H.S. Park, Y.Z. Cho, Immobilization of Cs-trapping ceramic filters within glass-ceramic waste forms, Ann. Nucl. Energy 110 (2017) 1121-1126, https://doi.org/10.1016/j.anucene.2017.08.051.
  27. Y. Yokomori, S. Idaka, The crystal structure of analcime, Microporous Mesoporous Mater. 21 (1998) 365-370, https://doi.org/10.1016/S1387-1811(98)00019-5.
  28. B.G. Ferraris, D.W. Jones, J. Yerkess, A neutron-diffraction study of the crystal structure of analcime, $NaAlSi_2O_6{\cdot}H_2O$, Zeitschrift Fur Krist 135 (1972) 240-252. https://doi.org/10.1524/zkri.1972.135.3-4.240
  29. R.M. Beger, The crystal structure and chemical composition of pollucite, Zeitschrift Fur Krist. - New Cryst. Struct. 129 (1969) 280-302, https://doi.org/10.1524/zkri.1969.129.1-4.280.
  30. K. Yanagisawa, N. Yamasaki, N. Kozai, S. Muraoka, Leachability of waste form containing cesium produced by hydrothermal hot-pressing, J. Nucl. Sci. Technol. 27 (1990) 1072-1074, https://doi.org/10.1080/18811248.1990.9731294.
  31. J.R. Ugal, M. Mustafa, A.A. Abdulhadi, Preparation of zeolite type 13X from locally available raw materials, Iraqui J. Chem. Pet. Eng. 9 (2008) 51-56.
  32. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials, John Wiley & Sons, 2010, https://doi.org/10.1002/9780470822371.
  33. M. Omerasevic, L. Matovic, J. Ruzic, Z. Golubovic, U. Jovanovic, S. Mentus, V. Dondur, Safe trapping of cesium into pollucite structure by hot-pressing method, J. Nucl. Mater. 474 (2016) 35-44, https://doi.org/10.1016/j.jnucmat.2016.03.006.
  34. R.C. Ewing, W.J. Webert, F.W. Clinard, Radiation effects in nuclear waste forms for high-level radioactive waste, Prog. Nucl. Energy 29 (1995) 63-127. https://doi.org/10.1016/0149-1970(94)00016-Y
  35. F.A. Bannister, M.H. Hey, A chemical, optical, and X-ray study of nepheline and Kaliophilite, Mineral. Mag. J. Mineral Soc. 22 (1931) 569-608, https://doi.org/10.1180/minmag.1931.022.134.03.
  36. G.D. Gatta, P. Cappelletti, B. de Gennaro, N. Rotiroti, A. Langella, New data on Cu-exchanged phillipsite: a multi-methodological study, Phys. Chem. Miner. 42 (2015) 723-733, https://doi.org/10.1007/s00269-015-0757-6.
  37. A. Brundu, G. Cerri, Thermal transformation of Cs-clinoptilolite to $CsAlSi_5O_{12}$, Microporous Mesoporous Mater. 208 (2015) 44-49, https://doi.org/10.1016/j.micromeso.2015.01.029.
  38. I.A. Breger, J.C. Chandler, P. Zubovic, An infrared study of water in heulandite and clinoptilolite, Am. Mineral. 55 (1970) 825-840.
  39. M. Omerasevic, J. Ruzic, B.N. Vasiljevic, Z. Bascarevic, D. Bucevac, J. Orlic, L. Matovic, Transformation of Cs-exchanged clinoptilolite to $CsAlSi_5O_{12}$ by hot-pressing, Ceram. Int. 43 (2017) 13500-13504, https://doi.org/10.1016/j.ceramint.2017.07.055.
  40. R. Dimitrijevic, V. Dondur, N. Petranovic, The high temperature synthesis of $CsAlSiO_4$ -ANA , polymorph in the system $Cs_2O-Al_2O_3-SiO_2$, J. Solid State Chem. 95 (1991) 335-345. https://doi.org/10.1016/0022-4596(91)90114-W
  41. D.K. Teertstra, P. Cerny, R. Chapman, Compositional heterogenity of pollucite from high grade Dyke, Maskwa lake, Southeastern Manitoba, Can. Mineral. 30 (1992) 687-697.
  42. P.F. Becher, Crack bridging processes in toughened ceramics, in: Toughening Mechanisms in Quasi-Brittle Materials, Kluwer Academic Publishers, 1991, pp. 19-20.
  43. H. Kada, M. Lachemi, N. Petrov, O. Bonneau, P.C. Aitcin, Determination of the coefficient of thermal expansion of high performance concrete from initial setting, Mater. Struct. 35 (2001) 35-41, https://doi.org/10.1617/13684.
  44. I. Yanase, S. Tamai, S. Matsuura, H. Kobayashi, Fabrication of low thermal expansion porous body of cubic cesium-deficient type pollucite, J. Eur. Ceram. Soc. 25 (2005) 3173-3179, https://doi.org/10.1016/j.jeurceramsoc.2004.06.020.
  45. T. Ota, I. Yamai, H. Suzuki, Thermal expansion of nepheline solid solutions in the system of $Na_{1-2x}Ca_xAlSiO_4$, J. Mater. Sci. Lett. 13 (1994) 393-394. https://doi.org/10.1007/BF00278007