DOI QR코드

DOI QR Code

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza (Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI)) ;
  • Tafreshi, Mohammad Amirhamzeh (Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI)) ;
  • bidabadi, Babak Shirani (Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Shafiei, Sepideh (Research School of Physics and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI)) ;
  • Nasiri, Ali (Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI))
  • 투고 : 2019.05.26
  • 심사 : 2019.10.02
  • 발행 : 2020.04.25

초록

Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

키워드

참고문헌

  1. B.B. Cipiti, G.L. Kulcinski, Helium and deuterium implantation in tungsten at elevated temperatures, J. Nucl. Mater. 347 (2005) 298-306. https://doi.org/10.1016/j.jnucmat.2005.08.009
  2. N.J. Dutta, N. Buzarbaruah, S.R. Mohanty, Damage studies on tungsten due to helium ion irradiation, J. Nucl. Mater. 452 (2014) 51-56. https://doi.org/10.1016/j.jnucmat.2014.04.032
  3. V.N. Pimenov, E.V. Dyomina, L.I. Ivanov, S.A. Maslyaev, V.A. Gribkov, R. Miklaszewski, M. Scholz, A.V. Dubrovsky, I.V. Volobuev, Y.E. Ugaste, F. Mezzetti, P. De Chiara, L. Pizzo, B. Kolman, A. Szydlowski, Damage of structural materials for fusion devices under pulsed ion and high temperature plasma beams, J. Nucl. Mater. 307-311 (2002) 95-99. https://doi.org/10.1016/S0022-3115(02)00994-7
  4. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, A.U. Team, Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329-333 (2004) 66-73. https://doi.org/10.1016/j.jnucmat.2004.04.005
  5. H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth, K. Sato, Plasma facing and high heat flux materials e needs for ITER and beyond, J. Nucl. Mater. 307-311 (2002) 43-52. https://doi.org/10.1016/S0022-3115(02)01175-3
  6. W. Wang, J. Roth, S. Lindig, C. Wu, Blister formation of tungsten due to ion bombardment, J. Nucl. Mater. 299 (2001) 124-131. https://doi.org/10.1016/S0022-3115(01)00679-1
  7. S. Takamura, T. Miyamoto, Y. Tomida, T. Minagawa, N. Ohno, Investigation on the effect of temperature excursion on the helium defects of tungsten surface by using compact plasma device, J. Nucl. Mater. 415 (2011) S100-S103. https://doi.org/10.1016/j.jnucmat.2010.12.021
  8. L. Pentecoste, P. Brault, A.-L. Thomann, P. Desgardin, T. Lecas, T. Belhabib, M.-F. Barthe, T. Sauvage, Low Energy and low fluence helium implantations in tungsten: molecular dynamics simulations and experiments, J. Nucl. Mater. 470 (2016) 44-54. https://doi.org/10.1016/j.jnucmat.2015.12.017
  9. X.C. Li, Y.N. Liu, Y. Yu, G.-N. Luo, X. Shu, G.-H. Lu, Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation, J. Nucl. Mater. 451 (2014) 356-360. https://doi.org/10.1016/j.jnucmat.2014.04.022
  10. X. Shu, P. Tao, X. Li, Y. Yu, Helium diffusion in tungsten: a molecular dynamics study, Nucl. Instrum. Methods Phys. Res. B 303 (2013) 84-86. https://doi.org/10.1016/j.nimb.2012.10.028
  11. X.C. Li, X. Shu, P. Tao, Y. Yu, G.-J. Niu, Y. Xu, F. Gao, G.-N. Luo, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten, J. Nucl. Mater. 455 (2014) 544-548. https://doi.org/10.1016/j.jnucmat.2014.08.028
  12. E.V. Kornelsen, Entrapment of helium ions at (100) and (110) tungsten surfaces, Can. J. Phys. 48 (1970) 2812. https://doi.org/10.1139/p70-350
  13. H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida, Microstructure evolution in tungsten during low-energy helium ion irradiation, J. Nucl. Mater. 283-287 (2000) 1134-1138. https://doi.org/10.1016/S0022-3115(00)00289-0
  14. K. Niwase, T. Esawa, T. Tanabe, M. Kiritani, F.E. Fujita, Dislocation loops and their depth profiles in He+ and D+ ion irradiated nickel, J. Nucl. Mater. 203 (1993) 56-66. https://doi.org/10.1016/0022-3115(93)90430-7
  15. H. Iwakiri, H. Wakimoto, H. Watanabe, N. Yoshida, Hardening behavior of molybdenum by low energy He and D ion irradiation, J. Nucl. Mater. 258-263 (1998) 873-878. https://doi.org/10.1016/S0022-3115(98)00260-8
  16. H. Iwakiri, K. Morishita, N. Yoshida, Effects of helium bombardment on the deuterium behavior in tungsten, J. Nucl. Mater. 307-311 (2002) 135-138. https://doi.org/10.1016/S0022-3115(02)01178-9
  17. K. Yu, Y. Liu, E. Fu, Y. Wang, M. Myers, H. Wang, L. Shao, X. Zhang, Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers, J. Nucl. Mater. 440 (2013) 310-318. https://doi.org/10.1016/j.jnucmat.2013.04.069
  18. S. Al-Hawat, M. Soukieh, M. Abou Kharoub, W. Al-Sadat, Using Mather-type plasma focus device for surface modification of AISI304 Steel, Vacuum 84 (2010) 907-912. https://doi.org/10.1016/j.vacuum.2009.12.009
  19. S. Javadi, M. Ghoranneviss, R.S. Rawat, A. Salar Elahi, Topographical, structural and hardness changes in surface layer of stainless steel-AISI 304 irradiated by fusion-relevant high energy deuterium ions and neutrons in a low energy plasma focus device, Surf. Coat. Technol. 313 (2017) 73-81. https://doi.org/10.1016/j.surfcoat.2017.01.054
  20. M. Bhuyan, S.R. Mohanty, C.V.S. Rao, P.A. Rayjada, P.M. Raole, Plasma focus assisted damage studies on tungsten, Appl. Surf. Sci. 264 (2013) 674-680. https://doi.org/10.1016/j.apsusc.2012.10.093
  21. V. Gribkov, A. Banaszak, B. Bienkowska, A. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R. Miklaszewski, M. Paduch, M. Sadowski, Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives, J. Phys. D Appl. Phys. 40 (2007) 3592-3607. https://doi.org/10.1088/0022-3727/40/12/008
  22. M. Chernyshova, V.A. Gribkov, E. Kowalska-Strzeciwilk, M. Kubkowska, R. Miklaszewski, M. Paduch, T. Pisarczyk, E. Zielinska, E.V. Demina, V.N. Pimenov, S.A. Maslyaev, G.G. Bondarenko, M. Vilemova, J. Matejicek, Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices, Fusion Eng. Des. 113 (2016) 109-118. https://doi.org/10.1016/j.fusengdes.2016.11.003
  23. T. Zhang, J. Lin, A. Patran, D. Wong, S.M. Hassan, S. Mahmood, T. White, T.L. Tan, S.V. Springham, S. Lee, P. Lee, R.S. Rawat, Optimization of a plasma focus device as an electron beam source for thin film deposition, Plasma Sources Sci. Technol. 16 (2007) 250-256. https://doi.org/10.1088/0963-0252/16/2/006
  24. M. Scholz, R. Miklaszewski, V. Gribkov, F. Mezzetti, PF-1000 device, Nukleonika 45 (2000) 155-158.
  25. M.J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto, Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus, Nucl. Fusion 55 (2015), 093011. https://doi.org/10.1088/0029-5515/55/9/093011
  26. V. Gribkov, V. Pimenov, L. Ivanov, E. Dyomina, S. Maslyaev, R. Miklaszewski, M. Scholz, U. Ugaste, A. Dubrovsky, V. Kulikauskas, Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device, J. Phys. D Appl. Phys. 36 (2003) 1817-1825. https://doi.org/10.1088/0022-3727/36/15/312
  27. S.H. Saw, V. Damideh, J. Ali, R.S. Rawat, P. Lee, S. Lee, Damage Study of Irradiated Tungsten using fast focus mode of a 2.2 kJ plasma focus, Vacuum 144 (2017) 14-20. https://doi.org/10.1016/j.vacuum.2017.07.002
  28. R. Niranjan, R. Rout, R. Srivastava, Y. Chakravarthy, P. Mishra, T. Kaushik, S.C. Gupta, Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device, Appl. Surf. Sci. 355 (2015) 989-998. https://doi.org/10.1016/j.apsusc.2015.07.192
  29. S. Lee, Plasma focus radiative model: review of the lee model code, J. Fusion Energy 33 (2014) 319-335. https://doi.org/10.1007/s10894-014-9683-8

피인용 문헌

  1. Damage study and comparison the effects of high-energy pulsed-protons of plasma focus device with low-energy protons of glow discharge plasma of tokamak vol.2, pp.3, 2020, https://doi.org/10.1088/2516-1067/ab9d72
  2. Free-surface effect on displacement cascades in BCC W: molecular dynamics study vol.60, pp.12, 2020, https://doi.org/10.1088/1741-4326/abb038