DOI QR코드

DOI QR Code

Anti-aging & Skin Hydration Effects of Spore oil Extracted from Ganoderma lucidum

영지버섯에서 추출한 포자오일의 항노화 및 보습 효능

  • 송환 (초당대학교 뷰티디자인학과) ;
  • 김면수 (인터케어 연구소)
  • Received : 2020.04.09
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

This study evaluated the anti-aging activity with antioxidant, anti-inflammatory and moisture activity of Ganoderma lucidum spore oil(GLS). GLS increased DPPH radical scavenging activity in a dose-dependent manners. Anti-inflammatory assay measured the inhibitory effect of GLS on NO, TNF-α and IL-6 production in LPS-stimulated RAW264.7 cells. As a result GLS inhibited NO and pro-inflammatory cytokine, TNF-α, IL-6 production. Also using human fibroblast cell to the procollagen production analysis and COL1A1 mRNA expression level analysis for defining, and for AQP-3 mRNA expression level analysis, used human keratinocyte cell. GLS increased procollagen production and COL1A1, AQP-3 mRNA expression. Our results suggest that the GLS have potential anti-inflammatory and wrinkle improves, skin moisture effect.

본 연구에서는 영지버섯 포자오일(GLS)의 항노화, 항산화, 항염 그리고 보습에 대한 활성 평가를 진행하였다. 항산화 활성 실험에서 GLS은 DPPH 라디칼 소거 활성이 농도 의존적으로 증가하였다. 항염 평가는 LPS를 자극시킨 RAW264.7 세포에서 GLS에 대한 NO, TNF-α 그리고 IL-6 생성물의 억제 효능을 측정한 결과, GLS는 NO 그리고 전염증 사이토카인인 TNF-α, IL-6 생성물을 억제하였다. 또한, procollagen 생성물과 COL1A1 mRNA 발현 분석을 위해 인간 섬유아세포를, 그리고 AQP-3 mRMA 발현 분석을 위하여 인간 각질형성세포를 사용하였다. 그 결과, GLS는 procollagen 생성물과 COL1A1, AQP-3 mRNA 발현을 증가시켰다. 이러한 연구결과는 GLS가 항염, 주름 그리고 보습에 대한 잠재적인 효능을 가지고 있음을 시사한다.

Keywords

References

  1. E. Makrantonaki & C. C. Zouboulis. (2007). Molecular mechanisms of skin aging: state of the art. Annals of the New York Academy of Sciences, 1119(1), 40-50. DOI : 10.1196/annals.1404.027
  2. G. Jenkins. (2002). Molecular mechanisms of skin ageing. Mechanisms of ageing and development, 123(7), 801-810. DOI : 10.1016/S0047-6374(01)00425-0
  3. J. H. Chung, V. N. Hanft & S. Kang. (2003). Aging and photoaging. Journal of the American Academy of Dermatology, 49(4), 690-697. DOI : 10.1067/S0190-9622(03)02127-3
  4. D. Y. Kim, S. C. Cho, H. S. Kwon & M. K. Kim. (2016). Cosmeceutical Activities of Broccoli Extracts. Journal of the Korea Soc. Beauty and Art, 17(1), 29-39. https://doi.org/10.18693/jksba.2016.17.1.29
  5. S. H. Park & I. S. Kwak. (2019). Effect of Photoprotective activities of Poncirustrifoliata immature Fruit extract and Naringin compound. Journal of the Korea Convergence Society, 10(7), 267-279. DOI : 10.15207/JKCS.2019.10.7.267
  6. G. Imokawa. (2008). Recent advances in characterizing biological mechanisms underlying UV-induced wrinkles: a pivotal role of fibrobrast-derived elastase. Archives of dermatological research, 300(1), 7-20. https://doi.org/10.1007/s00403-007-0798-x
  7. E. J. Kim, M. K. Kim, X. J. Jin, J. H. Oh, J. E. Kim & J. H. Chung. (2010). Skin aging and photoaging alter fatty acids composition, including 11, 14, 17- eicosatrienoic acid, in the epidermis of human skin. Journal of Korean medical science, 25(6), 980-983. DOI: 10.3346/jkms.2010.25.6.980.
  8. O. T. Jacobi. (1959). About the mechanisms of moisture regulation in the horny layer of the skin. Pro Sci Sect Good Assoc, 31, 22-24.
  9. D. S. Kim, B. K. Jeon, Y. J. Mun, Y. M. Kim, Y. E. Lee & W. H. Woo. (2011). Effect of Dioscorea aimadoimo on anti-aging and skin moisture capacity. Journal of Physiology & Pathology in Korean Medicine, 25(3), 425-430.
  10. M. Kohguchi et al. (2004). Immuno-potentiating effects of the antler-shaped fruiting body of Ganoderma lucidum (Rokkaku-Reishi). Bioscience, biotechnology, and biochemistry, 68(4), 881-887. DOI : 10.1271/bbb.68.881
  11. J. Soltys & M. T. Quinn. (1999). Modulation of endotoxin-and enterotoxin-induced cytokine release by in vivo treatment with ${\beta}$-(1, 6)-branched ${\beta}$-(1, 3)-glucan. Infection and immunity, 67(1), 244-252. DOI : 10.1128/IAI.67.1.244-252.1999
  12. M. Doita, L. T. Rasmussen, R. Seljelid & P. E. Lipsky. (1991). Effect of Soluble Aminated ${\beta}$‐1, 3‐D ‐Polyglucose on Human Monocytes: Stimulation of Cytokine and Prostaglandin E2 Production but Not Antigen‐Presenting Function. Journal of leukocyte biology, 49(4), 342-351. DOI: 10.1002/jlb.49.4.342
  13. G. Abel & J. K. Czop. (1992). Stimulation of human monocyte ${\beta}$-glucan receptors by glucan particles induces production of TNF-${\alpha}$ and IL-1${\beta}$. International journal of immunopharmacology, 14(8), 1363-1373. DOI: 10.1016/0192-0561(92)90007-8
  14. D. L. Williams, A. Mueller & W. Browder. (1996). Glucan-based macrophage stimulators. Clinical Immunotherapeutics, 5(5), 392-399. https://doi.org/10.1007/BF03259335
  15. I. Suzuki, H. Tanaka, A. Kinoshita, S. Oikawa, M. Osawa & T. Yadomae. (1990). Effect of orally administered ${\beta}$-glucan on macrophage function in mice. International journal of immunopharmacology, 12(6), 675-684. DOI : 10.1016/0192-0561(90)90105-V
  16. J. L. Ríos. (2010). Effects of triterpenes on the immune system. Journal of ethnopharmacology, 128(1), 1-14. DOI : 10.1016/j.jep.2009.12.045
  17. T. Kushiro & Y. Ebizuka. (2010). In Comprehensive Natural Products II; chemistry and biology, Elsevier(Online), https://www.elsevier.com
  18. K. H. Rhee & K. H. Lee. (2013). A method of depolymerizing Grifola frondosa Exo-polysaccharides, Grifola frondosa Exo-polysaccharides obtained therefrom, and cosmetic composotion and food product containing them. Chungcheongnam-do : College of Industrial Sciences, Kongju National University.
  19. H. Cho. (2017). Kobophenol A isolated from roots of Caragana sinica (Buc'hoz) Rehder exhibits anti-inflammatory activity by regulating $NF-{\kappa}B$ nuclear translocation in J774A.1 cells. Master's thesis. Dankook University, Cheonan.
  20. C. Huang, W. Y. Ma, M. L. Dawson, M. Rincon, R. A. Flavell & Z. Dong. (1997). Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proceedings of the National Academy of Sciences, 94(11), 5826-5830. DOI : 10.1073/pnas.94.11.5826
  21. J. S. Perlish, G. Lemlich & R. Fleischmajer. (1988). Identification of collagen fibrils in scleroderma skin. Journal of investigative dermatology, 90(1), 48-54. DOI : 10.1111/1523-1747.ep12462561
  22. K. Tsuji-Naito, S. Ishikura, M. Akagawa & H. Saeki. (2010). ${\alpha}$-Lipoic acid induces collagen biosynthesis involving prolyl hydroxylase expression via activation of TGF-${\beta}$-Smad signaling in human dermal fibroblasts. Connective tissue research, 51(5), 378-387. DOI : 10.3109/03008200903486188
  23. E. Y. Choi et al. (2016). Mechanisms for anti-wrinkle activities from fractions of black chokeberries. Journal of life science, 26(1), 34-41. DOI : 10.5352/JLS.2016.26.1.34
  24. N. Ikarashi, R. Kon, M. Kaneko, N. Mizukami, Y. Kusunoki & K. Sugiyama. (2017). Relationship between aging-related skin dryness and aquaporins. International journal of molecular sciences, 18(7), 1559. DOI : 10.3390/ijms18071559
  25. H. Cho, J. H. Park, E. K. Ahn & J. S. Oh. (2018). Kobophenol A Isolated from Roots of Caragana sinica (Buc'hoz) Rehder exhibits anti-inflammatory activity by regulating $NF-{\kappa}B$ nuclear translocation in J774A.1 cells. Toxicology reports, 5, 647-653. DOI : 10.1016/j.toxrep.2018.05.011
  26. S. S. Shin. (2019. July). $HeritaGEL^{TM}$ Red Ginseng relieves skin wrinkle and improves skin hydration. THE KBEAUTY science, 7, 52-57. https://doi.org/10.18226/23185279.v7iss2p52