DOI QR코드

DOI QR Code

The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability

  • Lee, Yun Jeong (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • Lee, Eun-Young (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Choi, Bo Hee (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Jang, Hyonchol (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • Myung, Jae-Kyung (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • You, Hye Jin (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center)
  • Received : 2020.02.06
  • Accepted : 2020.03.25
  • Published : 2020.05.31

Abstract

Nuclear receptor subfamily group H member 4 (NR1H4), also known as farnesoid X receptor, has been implicated in several cellular processes in the liver and intestine. Preclinical and clinical studies have suggested a role of NR1H4 in colon cancer development; however, how NR1H4 regulates colon cancer cell growth and survival remains unclear. We generated NR1H4 knockout (KO) colon cancer cells using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (CAS9) technology and explored the effects of NR1H4 KO in colon cancer cell proliferation, survival, and apoptosis. Interestingly, NR1H4 KO cells showed impaired cell proliferation, reduced colony formation, and increased apoptotic cell death compared to control colon cancer cells. We identified MYC as an important mediator of the signaling pathway alterations induced by NR1H4 KO. NR1H4 silencing in colon cancer cells resulted in reduced MYC protein levels, while NR1H4 activation using an NR1H4 ligand, chenodeoxycholic acid, resulted in time- and dose-dependent MYC induction. Moreover, NR1H4 KO enhanced the anti-cancer effects of doxorubicin and cisplatin, supporting the role of MYC in the enhanced apoptosis observed in NR1H4 KO cells. Taken together, our findings suggest that modulating NR1H4 activity in colon cancer cells might be a promising alternative approach to treat cancer using MYC-targeting agents.

Keywords

References

  1. Altman, B.J., Hsieh, A.L., Sengupta, A., Krishnanaiah, S.Y., Stine, Z.E., Walton, Z.E., Gouw, A.M., Venkataraman, A., Li, B., Goraksha-Hicks, P., et al. (2015). MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 22, 1009-1019. https://doi.org/10.1016/j.cmet.2015.09.003
  2. Bailey, A.M., Zhan, L., Maru, D., Shureiqi, I., Pickering, C.R., Kiriakova, G., Izzo, J., He, N., Wei, C., Baladandayuthapani, V., et al. (2014). FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G48-G58. https://doi.org/10.1152/ajpgi.00234.2013
  3. Bonamy, C., Sechet, E., Amiot, A., Alam, A., Mourez, M., Fraisse, L., Sansonetti, P.J., and Sperandio, B. (2018). Expression of the human antimicrobial peptide beta-defensin-1 is repressed by the EGFR-ERK-MYC axis in colonic epithelial cells. Sci. Rep. 8, 18043. https://doi.org/10.1038/s41598-018-36387-z
  4. Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. https://doi.org/10.1038/nature11252
  5. Cao, Z., Fan-Minogue, H., Bellovin, D.I., Yevtodiyenko, A., Arzeno, J., Yang, Q., Gambhir, S.S., and Felsher, D.W. (2011). MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286-2297. https://doi.org/10.1158/0008-5472.CAN-10-3367
  6. Chen, H., Liu, H., and Qing, G. (2018). Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 3, 5. https://doi.org/10.1038/s41392-018-0008-7
  7. Conacci-Sorrell, M., McFerrin, L., and Eisenman, R.N. (2014). An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357. https://doi.org/10.1101/cshperspect.a014357
  8. Dang, C.V. (2012). MYC on the path to cancer. Cell 149, 22-35. https://doi.org/10.1016/j.cell.2012.03.003
  9. Date, Y. and Ito, K. (2020). Oncogenic RUNX3: a link between p53 deficiency and MYC dysregulation. Mol. Cells 43, 176-181. https://doi.org/10.14348/molcells.2019.0285
  10. de Aguiar Vallim, T.Q., Tarling, E.J., and Edwards, P.A. (2013). Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657-669. https://doi.org/10.1016/j.cmet.2013.03.013
  11. DeBerardinis, R.J. and Chandel, N.S. (2016). Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200. https://doi.org/10.1126/sciadv.1600200
  12. Degirolamo, C., Modica, S., Palasciano, G., and Moschetta, A. (2011). Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol. Med. 17, 564-572. https://doi.org/10.1016/j.molmed.2011.05.010
  13. Frenzel, A., Zirath, H., Vita, M., Albihn, A., and Henriksson, M.A. (2011). Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression. PLoS One 6, e27988. https://doi.org/10.1371/journal.pone.0027988
  14. Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., Zhu, Q., Zhang, T., Leblanc, M., Liu, S., et al. (2019). FXR regulates intestinal cancer stem cell proliferation. Cell 176, 1098-1112.e18. https://doi.org/10.1016/j.cell.2019.01.036
  15. Garcia-Gutierrez, L., Delgado, M.D., and Leon, J. (2019). MYC oncogene contributions to release of cell cycle brakes. Genes (Basel) 10, 244. https://doi.org/10.3390/genes10030244
  16. Gomez-Ospina, N., Potter, C.J., Xiao, R., Manickam, K., Kim, M.S., Kim, K.H., Shneider, B.L., Picarsic, J.L., Jacobson, T.A., Zhang, J., et al. (2016). Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun. 7, 10713. https://doi.org/10.1038/ncomms10713
  17. Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350-1356. https://doi.org/10.1038/nm.3967
  18. Houlston, R.S. (2001). What we could do now: molecular pathology of colorectal cancer. Mol. Pathol. 54, 206-214. https://doi.org/10.1136/mp.54.4.206
  19. Hsieh, A.L., Walton, Z.E., Altman, B.J., Stine, Z.E., and Dang, C.V. (2015). MYC and metabolism on the path to cancer. Semin. Cell Dev. Biol. 43, 11-21. https://doi.org/10.1016/j.semcdb.2015.08.003
  20. Jo, M.J., Paek, A.R., Choi, J.S., Ok, C.Y., Jeong, K.C., Lim, J.H., Kim, S.H., and You, H.J. (2015). Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment. Eur. J. Pharmacol. 769, 257-265. https://doi.org/10.1016/j.ejphar.2015.11.027
  21. Kazi, A., Xiang, S., Yang, H., Delitto, D., Trevino, J., Jiang, R.H.Y., Ayaz, M., Lawrence, H.R., Kennedy, P., and Sebti, S.M. (2018). GSK3 suppression upregulates beta-catenin and c-Myc to abrogate KRas-dependent tumors. Nat. Commun. 9, 5154. https://doi.org/10.1038/s41467-018-07644-6
  22. Klag, T., Thomas, M., Ehmann, D., Courth, L., Mailander-Sanchez, D., Weiss, T.S., Dayoub, R., Abshagen, K., Vollmar, B., Thasler, W.E., et al. (2018). Beta-defensin 1 is prominent in the liver and induced during cholestasis by bilirubin and bile acids via farnesoid X receptor and constitutive androstane receptor. Front. Immunol. 9, 1735. https://doi.org/10.3389/fimmu.2018.01735
  23. Kong, B., Zhu, Y., Li, G., Williams, J.A., Buckley, K., Tawfik, O., Luyendyk, J.P., and Guo, G.L. (2016). Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G295-G302. https://doi.org/10.1152/ajpgi.00134.2015
  24. Kuipers, E.J., Grady, W.M., Lieberman, D., Seufferlein, T., Sung, J.J., Boelens, P.G., van de Velde, C.J., and Watanabe, T. (2015). Colorectal cancer. Nat. Rev. Dis. Primers 1, 15065. https://doi.org/10.1038/nrdp.2015.65
  25. Lajczak, N.K., Saint-Criq, V., O'Dwyer, A.M., Perino, A., Adorini, L., Schoonjans, K., and Keely, S.J. (2017). Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human beta-defensin-1 and -2 secretion by colonic epithelial cells. FASEB J. 31, 3848-3857. https://doi.org/10.1096/fj.201601365R
  26. Leonetti, C., Biroccio, A., Candiloro, A., Citro, G., Fornari, C., Mottolese, M., Del Bufalo, D., and Zupi, G. (1999). Increase of cisplatin sensitivity by c-myc antisense oligodeoxynucleotides in a human metastatic melanoma inherently resistant to cisplatin. Clin. Cancer Res. 5, 2588-2595.
  27. Luengo, A., Gui, D.Y., and Vander Heiden, M.G. (2017). Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161-1180. https://doi.org/10.1016/j.chembiol.2017.08.028
  28. Maran, R.R., Thomas, A., Roth, M., Sheng, Z., Esterly, N., Pinson, D., Gao, X., Zhang, Y., Ganapathy, V., Gonzalez, F.J., et al. (2009). Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J. Pharmacol. Exp. Ther. 328, 469-477. https://doi.org/10.1124/jpet.108.145409
  29. Nagarajan, A., Malvi, P., and Wajapeyee, N. (2016). Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2, 365-377. https://doi.org/10.1016/j.trecan.2016.06.002
  30. Okita, A., Takahashi, S., Ouchi, K., Inoue, M., Watanabe, M., Endo, M., Honda, H., Yamada, Y., and Ishioka, C. (2018). Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 9, 18698-18711. https://doi.org/10.18632/oncotarget.24617
  31. Okuyama, H., Endo, H., Akashika, T., Kato, K., and Inoue, M. (2010). Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res. 70, 10213-10223. https://doi.org/10.1158/0008-5472.CAN-10-2720
  32. Ortmayr, K., Dubuis, S., and Zampieri, M. (2019). Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat. Commun. 10, 1841. https://doi.org/10.1038/s41467-019-09695-9
  33. Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release. Cell 141, 432-445. https://doi.org/10.1016/j.cell.2010.03.030
  34. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308. https://doi.org/10.1038/nprot.2013.143
  35. Sarosiek, K.A., Fraser, C., Muthalagu, N., Bhola, P.D., Chang, W., McBrayer, S.K., Cantlon, A., Fisch, S., Golomb-Mello, G., Ryan, J.A., et al. (2017). Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31, 142-156. https://doi.org/10.1016/j.ccell.2016.11.011
  36. Satoh, K., Yachida, S., Sugimoto, M., Oshima, M., Nakagawa, T., Akamoto, S., Tabata, S., Saitoh, K., Kato, K., Sato, S., et al. (2017). Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl. Acad. Sci. U. S. A. 114, E7697-E7706. https://doi.org/10.1073/pnas.1710366114
  37. Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J.R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501-2514. https://doi.org/10.1101/gad.836800
  38. Smith, D.R., Myint, T., and Goh, H.S. (1993). Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br. J. Cancer 68, 407-413. https://doi.org/10.1038/bjc.1993.350
  39. Soucek, L., Whitfield, J., Martins, C.P., Finch, A.J., Murphy, D.J., Sodir, N.M., Karnezis, A.N., Swigart, L.B., Nasi, S., and Evan, G.I. (2008). Modelling Myc inhibition as a cancer therapy. Nature 455, 679-683. https://doi.org/10.1038/nature07260
  40. Stine, Z.E., Walton, Z.E., Altman, B.J., Hsieh, A.L., and Dang, C.V. (2015). MYC, metabolism, and cancer. Cancer Discov. 5, 1024-1039. https://doi.org/10.1158/2159-8290.CD-15-0507
  41. Sveen, A., Bruun, J., Eide, P.W., Eilertsen, I.A., Ramirez, L., Murumagi, A., Arjama, M., Danielsen, S.A., Kryeziu, K., Elez, E., et al. (2018). Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res. 24, 794-806. https://doi.org/10.1158/1078-0432.CCR-17-1234
  42. Takahashi, S., Tanaka, N., Fukami, T., Xie, C., Yagai, T., Kim, D., Velenosi, T.J., Yan, T., Krausz, K.W., Levi, M., et al. (2018). Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol. Commun. 2, 1567-1582. https://doi.org/10.1002/hep4.1263

Cited by

  1. Identification of a Metabolism-Related Risk Signature Associated With Clinical Prognosis in Glioblastoma Using Integrated Bioinformatic Analysis vol.10, 2020, https://doi.org/10.3389/fonc.2020.01631
  2. Identification of an Innate Immune-Related Prognostic Signature in Early-Stage Lung Squamous Cell Carcinoma vol.14, 2020, https://doi.org/10.2147/ijgm.s341175
  3. Adhesion of Platelets to Colon Cancer Cells Is Necessary to Promote Tumor Development in Xenograft, Genetic and Inflammation Models vol.13, pp.16, 2020, https://doi.org/10.3390/cancers13164243