DOI QR코드

DOI QR Code

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University) ;
  • Babar, Pravin (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2020.03.30
  • Accepted : 2020.04.20
  • Published : 2020.05.27

Abstract

The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

Keywords

References

  1. H. Cheng, Z. Su, P. Y. Kuang, G. F. Chen and Z. Q. Liu, J. Mater. Chem. A, 3, 19314 (2015). https://doi.org/10.1039/C5TA03985A
  2. P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, Small, 14, 1702568 (2018). https://doi.org/10.1002/smll.201702568
  3. L. M. Cao, J. W. Wang, D. C. Zhong and T. B. Lu, J. Mater. Chem. A, 6, 3224 (2018). https://doi.org/10.1039/C7TA09734D
  4. H. Wang, H. W. Lee, Y. Deng, Z. Lu, P. C. Hsu, Y. Liu, D. Lin and Y. Cui, Nat. Commun., 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
  5. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catal., 6, 580 (2016). https://doi.org/10.1021/acscatal.5b02291
  6. H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, Energy Environ. Sci., 11, 2858 (2018). https://doi.org/10.1039/c8ee00927a
  7. P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, J. Colloid Interface Sci., 537, 43 (2019). https://doi.org/10.1016/j.jcis.2018.10.079
  8. M. Carmo, D. L. Fritz, J. Merge and D. Stolten, Int. J. Hydrogen Energy, 38, 4901 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
  9. Y. Sun, M. Delucchi and J. Ogden, Int. J. Hydrogen Energy, 36, 11116 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.157
  10. M. R. Gao, Y. F. Xu, J. Jiang and S. H. Yu, Chem. Soc. Rev., 42, 2986 (2013). https://doi.org/10.1039/c2cs35310e
  11. H. Q. Zhou, F. Yu, Y. F. Huang, J. Y. Sun, Z. Zhu, R. J. Nielsen, R. He, J. M. Bao, W. A. Goddard III, S. Chen and Z. F. Ren, Nat. Commun., 7, 12765 (2016). https://doi.org/10.1038/ncomms12765
  12. M. W. Kanan and D. G. Nocera, Science, 321, 1072 (2011). https://doi.org/10.1126/science.1162018
  13. P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, ACS Sustainable Chem. Eng., 7, 10035 (2019). https://doi.org/10.1021/acssuschemeng.9b01260
  14. F. Yang, Y. Chen, G. Cheng, S. Chen and W. Luo, ACS Catal., 7, 3824 (2017). https://doi.org/10.1021/acscatal.7b00587
  15. A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 26, 4661 (2016). https://doi.org/10.1002/adfm.201600566
  16. J. Nai, Y. Lu, L. Yu, x. Wand and X. W. Lou, Adv. Mater., 29, 1703870 (2017). https://doi.org/10.1002/adma.201703870
  17. X. Yin, G. Sun, L. Wang, L. Bai, L. Su, Y. Wang, Q. Du and G. Shao, Int. J. Hydrogen Energy, 42, 25267 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.129
  18. M. Cheng, H. Fan, Y. Song, Y. Cui and R. Wang, Dalton Trans., 46, 9201 (2017). https://doi.org/10.1039/C7DT01289F
  19. C. Jing, X. Liu, X. Liu. D. Jiang, B. Dong, F. Dong, J. Wang, N. Li, T. Lan and Y. Zhang, CrystEngComm, 20, 7428 (2018). https://doi.org/10.1039/c8ce01607k
  20. X. Du, W. Lian and X. Zhang, Int. J. Hydrogen Energy, 43, 20627 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.123