DOI QR코드

DOI QR Code

Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding

습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동

  • Choi, Jin Sam (School of Materials Science and Engineering, University of Ulsan)
  • 최진삼 (울산대학교 첨단소재공학부)
  • Received : 2019.04.05
  • Accepted : 2019.07.22
  • Published : 2020.05.27

Abstract

As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Keywords

References

  1. M. Fuji, Hyomen Kagaku(in Japanese), 24, 625 (2003). https://doi.org/10.1380/jsssj.24.625
  2. A. Heim, T. P. Olejik, A. Pawlak, Physicochemical Problems Miner. Process., 39, 189 (2005).
  3. I. J. Lim and P. Somasundaran, Powder Technol., 6, 171 (1972). https://doi.org/10.1016/0032-5910(72)80074-3
  4. P. H. Wiersema, A. L. Loeb and J. T. G. Overbeek, J. Colloid Interface Sci., 22, 78 (1966). https://doi.org/10.1016/0021-9797(66)90069-5
  5. P. C. Kapur and D. W. Fuerstenau, Int. J. Miner. Process., 20, 45 (1987). https://doi.org/10.1016/0301-7516(87)90016-0
  6. C. Suryanarayana, Procedia Mater. Sci., 46, 1 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
  7. V. Deniz and T. Onur, Int. J. Miner. Process., 67, 71 (2002). https://doi.org/10.1016/S0301-7516(02)00041-8
  8. J. Dittmann, E. Koos and N. Willenbacher, J. Am. Ceram. Soc., 96, 391 (2013). https://doi.org/10.1111/jace.12126
  9. A. Chaudhari, Z. Y. Soh, H. Wang and A. S. Kumar, Int. J. Mach. Tool. Manufact., 133, 47 (2018). https://doi.org/10.1016/j.ijmachtools.2018.05.009
  10. C. Suyanarayana, Prog. Mater. Sci., 46, 1 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
  11. J. S. Choi, Kr Patent, KR100928044B1 (2009).
  12. J. S. Choi, D. Y. Jeong, D. W. Shin and W. T. Bae, J. Korean Ceram. Soc., 50, 238 (2013). https://doi.org/10.4191/kcers.2013.50.3.238
  13. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media., p.368, Pergamon, Oxford, England (1960).
  14. K. Yildirim and L. G. Austin, Wear, 218, 15 (1998). https://doi.org/10.1016/S0043-1648(98)00198-7
  15. S. Nomura and T. Tanaka, Powder Technol., 58, 117 (1989). https://doi.org/10.1016/0032-5910(89)80023-3
  16. D. Eskin and S. Voropayev, Min. Eng., 14, 1161 (2001). https://doi.org/10.1016/S0892-6875(01)00134-0
  17. S. G. Malghan, D. B. Minor and L. S. H. Lum, Powder Technol., 67, 201 (1991). https://doi.org/10.1016/0032-5910(91)80156-D
  18. A. Jankovic, W. Valery, and E. Davis, Min. Eng., 17, 1075(2004). https://doi.org/10.1016/j.mineng.2004.06.031
  19. J. B. Rao, G. J. Catherin, I. N. Murthy, D. V. Rao and B. N. Raju, Int. J. Eng. Sci. Technol., 3, 82 (2011).
  20. L. G. Austin, K. Shoji and P. T. Luckie, Powder Technol., 14, 71 (1976). https://doi.org/10.1016/0032-5910(76)80009-5
  21. J. K. Lee, Mechanical Grinding of Inorganic Raw Materials (in Korean), p.361, Bando Press, Seoul (1990).
  22. C. Frances and C. Laguerie, Powder Technol., 99, 147 (1998). https://doi.org/10.1016/S0032-5910(98)00098-9
  23. L. Takacs and J. S. McHenry, Mater. Sci., 41, 5246 (2006). https://doi.org/10.1007/s10853-006-0312-4
  24. J. A. Herbst and D. W. Fuerstenau, Trans. AIME Met. Pet. Eng., 252, 169 (1972).
  25. H. L. Lee, C. J. Jung, K. C. Park, Unit Operation (in Korean), p. 162, Bando Press, Seoul (1983).
  26. P. W. Cleary, Int. J. Miner. Process, 63, 79 (2001). https://doi.org/10.1016/S0301-7516(01)00037-0
  27. L. A. Vermeulen, Powder Technol., 46, 281 (1986). https://doi.org/10.1016/0032-5910(86)80038-9
  28. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Sym. Int. Sci. Eng., 21, 2333 (1990).
  29. M. Hosokawa, Nanoparticle Technology Handbook, ed. K. Nogi, M. Naito and T. Yokoyama, p.8, Elsevier, Amsterdam, Netherlands (2007).