DOI QR코드

DOI QR Code

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation

광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가

  • Park, Jong-Hyun (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 박종현 (충남대학교 공과대학 신소재공학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과)
  • Received : 2020.01.13
  • Accepted : 2020.04.09
  • Published : 2020.05.27

Abstract

Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Keywords

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  2. P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007). https://doi.org/10.1021/jp066952u
  3. C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  4. A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009). https://doi.org/10.1039/B800489G
  5. X. Chen, S. Chen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010). https://doi.org/10.1021/cr1001645
  6. F. E. Osterloch, Chem. Soc. Rev., 42, 2294 (2013). https://doi.org/10.1039/C2CS35266D
  7. Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep., 6, 30158 (2016). https://doi.org/10.1038/srep30158
  8. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun and Y. Zhang, Nano. Res., 8, 2891 (2015). https://doi.org/10.1007/s12274-015-0794-y
  9. M. Y. Wang, L. Sun, Z. Q. Lin, J. H. Cai, K. P. Xie and C. J. Lin, Energy Environ. Sci., 6, 1211 (2013). https://doi.org/10.1039/c3ee24162a
  10. D. A. Wheeler, G. M. Wang, Y. C. Ling, Y. Li and J. Z. Zhang, Energy Environ. Sci., 5, 6682 (2012). https://doi.org/10.1039/c2ee00001f
  11. Z. Kang, Y. S. Gu, X. Q. Yan, Z. M. Bai, Y. C. Liu, S. Liu, X. H. Zhang, Z. Zhang, X. J. Zhang and Y. Zhang, Biosens. Bioelectron., 64, 499 (2015). https://doi.org/10.1016/j.bios.2014.09.055
  12. Z. Kang, X. Q. Yan, Y. F. Wang, Z. M. Bai, Y. C. Liu, Z. Zhang, P. Lin, X. H. Zhang, H. G. Yuan and X. J. Zhang, Sci. Rep., 5, 7882 (2015). https://doi.org/10.1038/srep07882
  13. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  14. B. Min and H. Kim, Korean J. Mater. Res., 29, 196 (2019). https://doi.org/10.3740/MRSK.2019.29.3.196
  15. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  16. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999). https://doi.org/10.1021/ar9700365
  17. N. Beermann, L. Vayssieres, S.-E. Lindquist and A. Hagfeldt, J. Electrochem. Soc., 147, 2456 (2000). https://doi.org/10.1149/1.1393553
  18. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  19. J.-J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  20. L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012). https://doi.org/10.1016/j.jallcom.2011.09.028
  21. L. M. Fudzi, Z. Zainai, H. N. Lim. S.-K. Chang, A. M. Holi and M. S. Ali, Materials, 11, 704 (2018). https://doi.org/10.3390/ma11050704
  22. R. Zhang, P.-G. Yin. N. Wang and L. Guo, Solid State Sci., 11, 865 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016
  23. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock and R. G. Gordon, Adv. Energy Mater., 1, 1116 (2011). https://doi.org/10.1002/aenm.201100330
  24. J. Taug, R. Grigorovici and A. Vancu, Phys. Stat. Sol., 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224
  25. V. Srikant and D. R. Clarke, J. Appl. Phys., 83, 5447 (1998). https://doi.org/10.1063/1.367375
  26. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014). https://doi.org/10.1039/C3CS60378D
  27. D. T. Sawyer, A. J. Sobkowiak and J. Roberts, Jr., Electrochemistry for Chemists, 2nd ed., p. 196, John Wiley & Sons, New York (1995).