DOI QR코드

DOI QR Code

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application

N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성

  • Kim, Kiryun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김기륜 (충남대학교 에너지기술과학 대학원) ;
  • 장효식 (충남대학교 에너지기술과학 대학원)
  • Received : 2020.04.27
  • Accepted : 2020.05.08
  • Published : 2020.05.27

Abstract

In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.

Keywords

References

  1. M. Rudiger, S. Fisher, J. Frank, A. Ivaturi, B. S. Richards, K. W. Kramer, M. Hermle and J. C. Goldschmidt, Sol. Energy Mater. Sol. Cells, 128, 57 (2014). https://doi.org/10.1016/j.solmat.2014.05.014
  2. C. Zhang, H. Shen, L. Sun, J. Yang, S. Wu and W. Lu, Energies, 13, 1388 (2020). https://doi.org/10.3390/en13061388
  3. M. Raghuwanshi, A. Laterne, J. L. Perchec, P. Pareige, E. Cadel, S. Gall and S. Duguay, Prog. Photovoltaics, 23, 1724 (2015). https://doi.org/10.1002/pip.2607
  4. D. Pysch, A. Mette, A. Filipovic and S. W. Glunz, Prog. Photovoltaics, 17, 101 (2009). https://doi.org/10.1002/pip.855
  5. W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. D. Ceuster, K. R. Mcintosh, D. D. Smith and R. M. Swanson, in Proc., 19th EPVSEC, p.387 (2004).
  6. A. Hubner, A. G. Aberle and T. Hezel, Appl. Phys. Lett., 70, 1008 (1997). https://doi.org/10.1063/1.118466
  7. R. Hezel, Prog. Photovoltaics, 11, 549 (2003). https://doi.org/10.1002/pip.510
  8. K.-H. Cho, Y. J. Cho, H. S. Chang, K.-J. Kim and H. E. Song, J. Korean Phys. Soc., 67, 995 (2015). https://doi.org/10.3938/jkps.67.995
  9. K. H. Cho, Y. J. Cho and H. S. Chang, J. Koran Ceram. Soc., 51, 197 (2014). https://doi.org/10.4191/kcers.2014.51.3.197
  10. M. S. Jeong, S. J Choi, H. S. Chang, J. I. Lee, M. G. Kang, D. H. Kim and H. E. Song, Jpn. J. Appl. Phys., 55 (2016).
  11. G. M. Kim, Y. J. Cho and H. S. Chang, Korean J. Mater. Res., 29, 228 (2019). https://doi.org/10.3740/MRSK.2019.29.4.228
  12. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M. M. Kessels, Prog. Photovoltaics, 16, 461 (2008). https://doi.org/10.1002/pip.823
  13. P. Jaffrennou, A. Uruena, J. Das, J. Penaud, M. Moors, A. Rothschild, B. Lombardet and J. Szlufcik, Proceedings of the 26th World Conference and Exhibition on Photovoltaic Solar Energy Conversion (2011).
  14. F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao and L. H. Chan, Microelectron. Eng., 71, 104 (2004). https://doi.org/10.1016/j.mee.2003.08.010
  15. J. Dupuis, E. Fourmond, J. F. lelievre, D. Ballutaud and M. Lemiti, Thin Solid Films, 516, 6954 (2008). https://doi.org/10.1016/j.tsf.2007.12.026
  16. M. I. Alayo, I. Pereyra, W. L. Scopel and M. C. A. Fantini, Thin Solid Films, 402, 154 (2002). https://doi.org/10.1016/S0040-6090(01)01685-6