DOI QR코드

DOI QR Code

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory

전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석

  • Choi, Hyuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kang, Eunji (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
  • 최혁 (충남대학교 신소재공학과) ;
  • 강은지 (충남대학교 신소재공학과) ;
  • 김현유 (충남대학교 신소재공학과)
  • Received : 2020.04.22
  • Accepted : 2020.05.08
  • Published : 2020.05.27

Abstract

Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.

Keywords

References

  1. T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer and H.- J. Freund, Acc. Chem. Res., 41, 949 (2008). https://doi.org/10.1021/ar800078m
  2. S. Schauermann and H.-J. Freund, Acc. Chem. Res., 48, 2775 (2015). https://doi.org/10.1021/acs.accounts.5b00237
  3. S. Schauermann, N. Nilius, S. Shaikhutdinov and H.-J. Freund, Acc. Chem. Res., 46, 1673 (2013). https://doi.org/10.1021/ar300225s
  4. M. Cargnello, V. V. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and C. B. Murray, Science, 341, 771 (2013). https://doi.org/10.1126/science.1240148
  5. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013). https://doi.org/10.1021/jz301778b
  6. J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek and J. F. Sanz, Science, 345, 546 (2014). https://doi.org/10.1126/science.1253057
  7. J. A. Rodriguez, D. C. Grinter, Z. Liu, R. M. Palomino and S. D. Senanayake, Chem. Soc. Rev., 46, 1824 (2017). https://doi.org/10.1039/C6CS00863A
  8. H. Ha, S. Yoon, K. An and H. Y. Kim, ACS Catal., 8, 11491 (2018). https://doi.org/10.1021/acscatal.8b03539
  9. Y. Choi, S. K. Cha, H. Ha, S. Lee, H. K. Seo, J. Y. Lee, H. Y. Kim, S. O. Kim and W. Jung, Nat. Nanotechnol., 14, 245 (2019). https://doi.org/10.1038/s41565-019-0367-4
  10. M. Yoo, Y.-S. Yu, H. Ha, S. Lee, J.-S. Choi, S. Oh, E. Kang, H. Choi, H. An, K.-S. Lee, J. Y. Park, R. Celestre, M. A. Marcus, K. Nowrouzi, D. Taube, D. A. Shapiro, W. Jung, C. Kim and H. Y. Kim, Energy Environ. Sci., 13, 1231 (2020). https://doi.org/10.1039/C9EE03492G
  11. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 3, 2194 (2012). https://doi.org/10.1021/jz300631f
  12. H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012). https://doi.org/10.1021/ja207510v
  13. L. Zhang, H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 2943 (2013). https://doi.org/10.1021/jz401524d
  14. C. Madhuri, K. Venkataramana, A. Nurhayati and C. V. Reddy, Curr. Appl. Phys., 18, 1134 (2018). https://doi.org/10.1016/j.cap.2018.06.013
  15. P. Kim-Lohsoontorn, N. Laosiripojana and J. Bae, Curr. Appl. Phys., 11, S223 (2011). https://doi.org/10.1016/j.cap.2010.11.114
  16. J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans and M. Perez, Angew. Chem. Int. Ed., 46, 1329 (2007). https://doi.org/10.1002/anie.200603931
  17. J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stacchiola, S. D. Senanayake, S. Ma, M. Perez and P. Liu, Angew. Chem., 121, 8191 (2009). https://doi.org/10.1002/ange.200903918
  18. J. A. Rodriguez, J. C. Hanson, D. Stacchiola and S. D. Senanayake, Phys. Chem. Chem. Phys., 15, 12004 (2013). https://doi.org/10.1039/c3cp50416f
  19. A. Bruix, J. A. Rodriguez, P. J. Ramirez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek and F. Illas, J. Am. Chem. Soc., 134, 8968 (2012). https://doi.org/10.1021/ja302070k
  20. H. Y. Kim and P. Liu, ChemCatChem, 5, 3673 (2013). https://doi.org/10.1002/cctc.201300449
  21. C. Ratnasamy and J. P. Wagner, Catal. Rev.: Sci. Eng., 51, 325 (2009). https://doi.org/10.1080/01614940903048661
  22. J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. D. Senanayake, L. Barrio, P. Liu, J. F. Sanz, J. Hrbek and J. A. Rodriguez, J. Am. Chem. Soc., 132, 356 (2010). https://doi.org/10.1021/ja9087677
  23. J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. Ma, P. Liu, A. Nambu, J. F. Sanz, J. Hrbek and J. A. Rodriguez, Proc. Natl. Acad. Sci. U. S. A., 106, 4975 (2009). https://doi.org/10.1073/pnas.0812604106
  24. D. R. Mullins, P. M. Albrecht, T.-L. Chen, F. C. Calaza, M. D. Biegalski, H. M. Christen and S. H. Overbury, J. Phys. Chem. C, 116, 19419 (2012). https://doi.org/10.1021/jp306444h
  25. D. Fernandez-Torre, K. Kosmider, J. Carrasco, M. V. Ganduglia-Pirovano and R. Perez, J. Phys. Chem. C, 116, 13584 (2012). https://doi.org/10.1021/jp212605g
  26. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169
  27. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B: Condens. Matter Mater. Phys., 57, 1505 (1998). https://doi.org/10.1103/physrevb.57.1505
  28. K. Jiri, R. B. David and M. Angelos, J. Phys. Condens. Matter., 22, 022201 (2010). https://doi.org/10.1088/0953-8984/22/2/022201
  29. J. Klimes, D. R. Bowler and A. Michaelides, Phys. Rev. B: Condens. Matter Mater. Phys., 83, 195131 (2011). https://doi.org/10.1103/physrevb.83.195131
  30. P. E. Blochl, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953
  31. G. Henkelman and H. Jonsson, J. Chem. Phys., 113, 9978 (2000). https://doi.org/10.1063/1.1323224
  32. G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys., 113, 9901 (2000). https://doi.org/10.1063/1.1329672
  33. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli and R. Rosei, Science, 309, 752 (2005). https://doi.org/10.1126/science.1111568
  34. C. Loschen, A. Migani, S. T. Bromley, F. Illas and K. M. Neyman, Phys. Chem. Chem. Phys., 10, 5730 (2008). https://doi.org/10.1039/b805904g
  35. S. Yu, H. Zhang, C. Lin and M. Bian, Curr. Appl. Phys., 19, 82 (2019). https://doi.org/10.1016/j.cap.2018.11.015
  36. S.-L. Zhang, H.-H. Choi, H.-Y. Yue and W.-C. Yang, Curr. Appl. Phys., 14, 264 (2014). https://doi.org/10.1016/j.cap.2013.11.031
  37. K. Mudiyanselage, H. Y. Kim, S. D. Senanayake, A. E. Baber, P. Liu and D. Stacchiola, Phys. Chem. Chem. Phys., 15, 15856 (2013). https://doi.org/10.1039/c3cp52295d