DOI QR코드

DOI QR Code

Quantitative and qualitative analysis of autophagy flux using imaging

  • Kim, Suree (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University) ;
  • Choi, Soohee (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University) ;
  • Kang, Dongmin (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University)
  • Received : 2020.02.19
  • Published : 2020.05.31

Abstract

As an intracellular degradation system, autophagy is an essential and defensive cellular program required for cell survival and cellular metabolic homeostasis in response to various stresses, such as nutrient deprivation and the accumulation of damaged organelles. In general, autophagy flux consists of four steps: (1) initiation (formation of phagophore), (2) maturation and completion of autophagosome, (3) fusion of autophagosomes with lysosomes (formation of autolysosome), and (4) degradation of intravesicular components within autolysosomes. The number of genes and reagents that modulate autophagy is increasing. Investigation of their effect on autophagy flux is critical to understanding the roles of autophagy in many physiological and pathological processes. In this review, we summarize and discuss ways to analyze autophagy flux quantitatively and qualitatively with the use of imaging tools. The suggested imaging method can help estimate whether each modulator is an inhibitor or a promoter of autophagy and elucidate the mode of action of specific genes and reagents on autophagy processes.

Keywords

References

  1. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18 https://doi.org/10.1242/jcs.01620
  2. Massey AC, Zhang C and Cuervo AM (2006) Chaperonemediated autophagy in aging and disease. Curr Top Dev Biol 73, 205-235 https://doi.org/10.1016/S0070-2153(05)73007-6
  3. Li WW, Li J and Bao JK (2012) Microautophagy: lesserknown self-eating. Cell Mol Life Sci 69, 1125-1136 https://doi.org/10.1007/s00018-011-0865-5
  4. Yang Z and Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335, 1-32 https://doi.org/10.1007/978-3-642-00302-8_1
  5. Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335 https://doi.org/10.1038/nature09782
  6. Melendez A and Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135, 2347-2360 https://doi.org/10.1242/dev.016105
  7. Mizushima N, Levine B, Cuervo AM and Klionsky DJ (2008) Autophagy fights disease through cellular selfdigestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
  8. Mathew R, Karantza-Wadsworth V and White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7, 961-967 https://doi.org/10.1038/nrc2254
  9. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19, 983-997 https://doi.org/10.1038/nm.3232
  10. Yue Z, Jin S, Yang C, Levine AJ and Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 15077-15082 https://doi.org/10.1073/pnas.2436255100
  11. Mizushima N, Yoshimori T and Levine B (2010) Methods in mammalian autophagy research. Cell 140, 313-326 https://doi.org/10.1016/j.cell.2010.01.028
  12. Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467 https://doi.org/10.1038/nrm2708
  13. Vakifahmetoglu-Norberg H, Xia HG and Yuan J (2015) Pharmacologic agents targeting autophagy. J Clin Invest 125, 5-13 https://doi.org/10.1172/JCI73937
  14. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222 https://doi.org/10.1080/15548627.2015.1100356
  15. Yoshii SR and Mizushima N (2017) Monitoring and Measuring Autophagy. Int J Mol Sci 18, 1-13 https://doi.org/10.3390/ijms18010001
  16. Mizushima N and Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3, 542-545 https://doi.org/10.4161/auto.4600
  17. Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614 https://doi.org/10.1083/jcb.200507002
  18. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145 https://doi.org/10.1074/jbc.M702824200
  19. Gordon PB and Seglen PO (1988) Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 151, 40-47 https://doi.org/10.1016/0006-291X(88)90556-6
  20. Glick D, Barth S and Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12 https://doi.org/10.1002/path.2697
  21. Mizushima N (2007) Autophagy: process and function. Genes Dev 21, 2861-2873 https://doi.org/10.1101/gad.1599207
  22. Yu L, McPhee CK, Zheng L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 https://doi.org/10.1038/nature09076
  23. Itakura E and Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776 https://doi.org/10.4161/auto.6.6.12709
  24. Matsunaga K, Saitoh T, Tabata K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396 https://doi.org/10.1038/ncb1846
  25. Weidberg H, Shvets E and Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80, 125-156 https://doi.org/10.1146/annurev-biochem-052709-094552
  26. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685-701 https://doi.org/10.1083/jcb.200803137
  27. Polson HE, de Lartigue J, Rigden DJ et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522 https://doi.org/10.4161/auto.6.4.11863
  28. Noda T, Matsunaga K, Taguchi-Atarashi N and Yoshimori T (2010) Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol 21, 671-676 https://doi.org/10.1016/j.semcdb.2010.04.002
  29. Obara K, Sekito T, Niimi K and Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283, 23972-23980 https://doi.org/10.1074/jbc.M803180200
  30. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802 https://doi.org/10.1038/emboj.2010.74
  31. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728 https://doi.org/10.1093/emboj/19.21.5720
  32. Webb JL, Ravikumar B and Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36, 2541-2550 https://doi.org/10.1016/j.biocel.2004.02.003
  33. Kielian MC and Cohn ZA (1982) Intralysosomal accumulation of polyanions. II. Polyanion internalization and its influence on lysosomal pH and membrane fluidity. J Cell Biol 93, 875-882 https://doi.org/10.1083/jcb.93.3.875
  34. Chevrier M, Brakch N, Celine L et al (2010) Autophagosome maturation is impaired in Fabry disease. Autophagy 6, 589-599 https://doi.org/10.4161/auto.6.5.11943
  35. Mauvezin C and Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPasedependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11, 1437-1438 https://doi.org/10.1080/15548627.2015.1066957
  36. Shaner NC, Steinbach PA and Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905-909 https://doi.org/10.1038/nmeth819
  37. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE and Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-1572 https://doi.org/10.1038/nbt1037
  38. Noda T and Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273, 3963-3966 https://doi.org/10.1074/jbc.273.7.3963
  39. Vezina C, Kudelski A and Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28, 721-726 https://doi.org/10.7164/antibiotics.28.721
  40. Lim JM, Lee KS, Woo HA, Kang D and Rhee SG (2015) Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol 210, 23-33 https://doi.org/10.1083/jcb.201412068
  41. Nicot AS and Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9, 1240-1249 https://doi.org/10.1111/j.1600-0854.2008.00754.x
  42. Simonsen A, Birkeland HC, Gillooly DJ et al (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117, 4239-4251 https://doi.org/10.1242/jcs.01287
  43. Ronan B, Flamand O, Vescovi L et al (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10, 1013-1019 https://doi.org/10.1038/nchembio.1681
  44. He S, Ni D, Ma B et al (2013) PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 15, 1206-1219 https://doi.org/10.1038/ncb2848
  45. Itakura E, Kishi-Itakura C and Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269 https://doi.org/10.1016/j.cell.2012.11.001
  46. Ueno K, Saito M, Nagashima M et al (2014) V-ATPasedependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p. Biochem Biophys Res Commun 443, 549-555 https://doi.org/10.1016/j.bbrc.2013.12.008
  47. Wang Y, Li Y, Wei F and Duan Y (2017) Optical Imaging Paves the Way for Autophagy Research. Trends Biotechnol 35, 1181-1193 https://doi.org/10.1016/j.tibtech.2017.08.006
  48. Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175 https://doi.org/10.4161/auto.5338