REVISIT TO ALEXANDER MODULES OF 2-GENERATOR KNOTS IN THE 3-SPHERE

HYUN-JONG SONG*

ABSTRACT. It is known that a 2-generator knot K has a cyclic Alexander module $\mathbb{Z}[t, t^{-1}]/(\Delta(t))$ where $\Delta(t)$ is the Alexander polynomial of K. In this paper we explicitly show how to reduce 2-generator Alexander modules to cyclic ones by using Chiswell, Glass and Wilson’s presentations of 2-generator knot groups

$$\langle x, y \mid (x^{\alpha_1})^{y^{\gamma_1}}, \ldots, (x^{\alpha_k})^{y^{\gamma_k}} \rangle$$

where $a^b = bab^{-1}$.

1. Introduction

A knot K in the 3-sphere S^3 whose fundamental group is defined by a presentation with two generators (and hence one relator) is called a 2-generator knot. An arc τ embedded in S^3 so that $K \cap \tau = \partial \tau$ is called an unknotting tunnel of K if the complement of a regular neighbourhood of $K \cup \tau$ in S^3 is H_2, a handlebody of genus 2. A knot with an unknotting is called a tunnel 1-knot. By attaching to H_2 a 2-handle corresponding to τ, one would get the exterior of K, the complement of a regular neighbourhood of K in S^3. Thus we see that a tunnel 1-knot is a 2-generator knot. The converse statement is one of intriguing conjectures in knot theory. Berge knots admitting lens space Dehn surgeries are well known examples of tunnel 1-knots. In particular, characterization of the Alexander polynomials of Berge knots seems somewhat intriguing subject. Recently Chiswell, Glass and Wilson [2] introduced a handy method of computing the Alexander polynomial of a 2-generator knot via its group presentation

$$\langle x, y \mid (x^{\alpha_1})^{y^{\gamma_1}}, \ldots, (x^{\alpha_k})^{y^{\gamma_k}} \rangle.$$

It is induced by a presentation admitting a generator with zero exponent sum [5, Chapter V, Lemma 11.8].

Received October 28, 2019; Accepted April 15, 2020.
2010 Mathematics Subject Classification. 57M25.
Key words and phrases. 2-generator knots, Alexander modules.
* This work was supported by a Research Grant of Pukyong National University (2019 year).
Indeed via Nielsen transformations [6, Chapter 3] corresponding to mutual subtractions in the Euclidean algorithm any 2-generator presentation of a knot group can be brought into \(<x, y \mid w> \) so that \(w_y \) and \(w_x \), the sum of exponents of \(y \) and \(x \) in \(w \), are 0 and 1 respectively. Then it is easy to see that the relator \(w \) is cyclically conjugate to that introduced by Chiswell, Glass and Wilson.

Using such special presentations of 2-generator knots, we have:

Theorem 1.1. Any 2-generator knot in the 3-sphere has a cyclic Alexander module \(\mathbb{Z}[t, t^{-1}]/(\Delta(t)) \) where \(\Delta(t) \) denotes the Alexander polynomial of a knot.

Milnor [7, Footnote, p. 120] asserted that a 2-generator knot has a cyclic Alexander module. This follows easily from the fact that the Alexander module has deficiency 0. See [4, p. 14] for more details. Hence the Alexander module arising from a 2-generator 1-relator knot group via Fox differential calculus can be always reduced to a cyclic one. The method shown in this paper may be thought of as explicit reducing steps for the desired cyclic Alexander modules. We have in mind a practical application of explicit knowledge of the Alexander polynomial to homology of the cyclic branched covering [9].

A knot \(K \) in \(S^3 \) is said to be a (1,1)-knot if \(K \) is split into a pair of trivial arcs in solid tori determined by a Heegaard torus of \(S^3 \). All torus knots, and all 2-bridge knots are (1,1)-knots. The author [8] showed that any (1,1)-knot in \(S^3 \) admits a cyclic Alexander module by explicitly constructing the infinite cyclic covering space of its exterior.

Finally it is pointed out that in a Chiswell, Glass and Wilson’s presentation, tidiness of a relator word (for the definition see [2, p.2]) would not be necessary to get the desired Alexander polynomial because it is assumed to be in \(\mathbb{Z}[t, t^{-1}] \) instead of \(\mathbb{Z}[t] \).

2. Proof of the main theorem

Lemma 2.1. A 2-generator knot in \(S^3 \) admits a presentation \(<x, y \mid w> \) such that \(w_y = 0 \), and \(w_x = 1 \).

Proof. If necessary replacing a generator to its inverse, we assume that for a knot group presentation \(<a, b \mid r> \) both \(r_a \) and \(r_b \) are relative prime positive integers since the abelianized presentation of a knot group is isomorphic to \(\mathbb{Z} \). Define \([r] \) to be the largest integer not greater than a real number \(r \). If \(r_a < r_b \), then replacing \(a \) by \(ab^{-[r_a]} \) (and hence \(a^{-1} \) by \(b^{[r_a]}a^{-1} \)) in \(r \), we end up with a presentation with a new pair of sums of exponents \((r_a, r_b - r_a[r_a]) \).

Otherwise exchanging roles of \(a \) and \(b \), we end up with a presentation with a new pair of sums of exponents \((r_a - r_b[r_b], r_b) \). Inductively executing Nielsen transformations corresponding to mutual subtractions, we eventually end up with \(<x, y \mid w> \) such that \(w_y = 0 \), and \(w_x = 1 \). \(\square \)

A presentation \(<x, y \mid w> \) of a knot group with \(w_y = 0 \) and \(w_x = 1 \) is said to be **normalized**.
Example 2.2. The fundamental group of a torus knot $t(5, 7)$ has a presentation $<x, y \mid x^5y^{-7}>$. Put $w_0 = x^5y^7$. Replacing x by $xy^{-\frac{5}{7}} = xy^{-1}$ (and hence x^{-1} by yx^{-1}) in w_0, we have

$$w_1 = xy^{-1}xy^{-1}xy^{-1}xy^{-1}xy^6$$

where $(w_1)_x = 5$, and $(w_1)_y = 2$. Replacing y by $yx^{-\frac{5}{7}} = yx^{-2}$ in w_1, we have

$$w_2 = xy^{-1}x^3y^{-1}x^3y^{-1}xyx^{-2}yx^{-2}yx^{-2}yx^{-2}y$$

where $(w_2)_x = 1$, and $(w_2)_y = 2$. Finally replacing x by yx^{-2} in w_2, we have the desired normalized relator.

$$w(x, y) = yxy^{-3}xy^{-2}xy^{-3}xy^{-2}xy^{-3}x$$

Remark 2.3. A normal presentation of a 2-generator knot group is not unique. For a normalized presentation $<x, y \mid w(x, y) >$, we may get another normalized presentation $<x, y \mid w(x, yk)>$ for any integer $k \in \mathbb{Z}$.

Lemma 2.4. Assume that a presentation $<x, y \mid w = y^{\beta_1}x^{\alpha_1}, \ldots, y^{\beta_k}x^{\alpha_k}>$ is normalized so that $w_y = 0$. Then w is cyclically conjugate to a word $(x_{\alpha_1}^\gamma y_1, \ldots, (x_{\alpha_k}^\gamma y_k)^{y_k}$.

Proof. For each $1 \leq j \leq k$, take $\gamma_j = \sum_{i=1}^{j} \beta_i$. Then the last term $(x_{\alpha_k}^\gamma y_k)^{y_k}$ is always equal to $x_{\alpha_k}^\gamma$ since $w_y = 0$.

Example 2.5.

For w in Example 2.2, we have the following product of conjugates :

$$x^y x^y x^{-2}x^y x^{-4}x^y x^{-6}x^y x^{-9}x^y x^{-11}x^y x^{-13}$$

$$x^y x^y x^{-16}x^y x^{-18}x^y x^{-20}x^y x^{-23}$$

$$(x^{-1})^y x^{-22}(x^{-1})^y x^{-20}(x^{-1})^y x^{-17}(x^{-1})^y x^{-15}(x^{-1})^y x^{-12}$$

$$(x^{-1})^y x^{-10}(x^{-1})^y x^{-7}(x^{-1})^y x^{-5}(x^{-1})^y x^{-2}x^{-1}$$

Let X be a standard 2-complex associated with a presentation of $<x, y \mid w>$ of a knot group G with a single 0-cell v, two 1-cells x, y and one 2-cell w such that $\pi_1(X, v) = G$. And let \tilde{X} be an infinite cyclic covering space of X such that $\pi_1(\tilde{X}, \tilde{v}) = G$, the commutator subgroup of G where \tilde{v} is 0-cell chosen in the 0-skeleton \tilde{X}^0 of \tilde{X}. Under action of the covering transformation group $G/G = < t^n | n \in \mathbb{Z} >$, $H_1(\tilde{X}) = G/G$ admits a $\mathbb{Z}[t, t^{-1}]$ module structure so called the Alexander module of a knot. For the canonical homomorphism $\phi : G = < x, y \mid w > \rightarrow G_{ab} \cong < t^n | n \in \mathbb{Z} > \cong G/G$. The linear extension to the group ring is also denoted by $\phi : \mathbb{Z}G \rightarrow \mathbb{Z}[t, t^{-1}]$, and $\phi(w) = w^\phi$ is denoted by
[w] for \(w \in \mathbb{Z}G \). Fox derivatives of \(w \in \mathbb{Z}G \) with respect to \(x, y \) are denoted by \(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y} \) respectively.

Lemma 2.6 follows immediately from Fox differential calculus, lemma 2.4 and the fact that the canonical homomorphism \(\phi \) carries \(x, y \) to 1, \(t \) respectively.

Lemma 2.6. For a presentation \(< x, y \mid w = (x^{\alpha_1})y^{\gamma_1}, \ldots, (x^{\alpha_k})y^{\gamma_k} >\) with \(w_x = 1 \), we have:

1. \(\frac{\partial w}{\partial x} = \sum_{i=1}^{k} \alpha_i t^{\gamma_i} \), and
2. \(\frac{\partial w}{\partial y} = 0 \)

For any positive integer \(n \), a tamed embedding of the \(n \)-sphere \(S^n \) in the \(n+2 \)-sphere \(S^{n+2} \) is said to be \(n \)-knot. From lemma 2.6, we have:

Corollary 2.7. If a \(n \)-knot has a presentation

\(< x, y \mid w = (x^{\alpha_1})y^{\gamma_1}, \ldots, (x^{\alpha_k})y^{\gamma_k} >,\)

then it has the Alexander polynomial \(\Delta(t) = \sum_{i=1}^{k} \alpha_i t^{\gamma_i} \).

Example 2.8. The Alexander polynomial corresponding to the normal presentation in Example 2.5 is

\[
t + t^{-2} + t^{-4} + t^{-6} + t^{-9} + t^{-11} + t^{-13} + t^{-16} + t^{-18} + t^{-20} + t^{-23} \\
- t^{-22} - t^{-20} - t^{-17} - t^{-15} - t^{-12} - t^{-10} - t^{-7} - t^{-5} - t^{-2} - 1
\]

The following example is prepared to show that we may get the desired Alexander polynomial from a normalized presentation \(< x, y \mid w >\) without the tidy condition of \(w \) in \([2]\).

Example 2.9. Kanenobu and Sumi \([3, \text{Example 2.1}]\) showed that a ribbon 2-knot \(K^2 = R(1,2,-3,1) \) admits a knot group presentation

\(< x, y \mid x^{-1}y^{-1}x^{-1}y^{-2}x^{-1}xy^2x^{-3}y >,\)

which is normalized to a presentation

\(< x, y \mid y^{-1}x^2y^{-1}x^{-1}yx^{-1}y^{-2}xyx^{-1}y^2xy^{-1}x > .\)

The relator word can be brought into the product of conjugates;

\((x^2)^{y^{-1}}(x^{-1})^{y^{-2}}(x^{-1})^y(x^{-1})(x)^{y^{-1}}(x^{-1})^{y^{-2}}(x^{-1})^y(x)^y x.\)
Finally we end up with the desired Alexander polynomial

\[\Delta(t) = 2t^{-1} - t^{-2} - t^{-1} + t^{-2} - t^{-1} + t + 1 \]

From the homology long exact sequence of of a pair \((\tilde{X}, \tilde{X}_0)\), we have a short exact sequence

\[0 \to H_1(\tilde{X}) \to H_1(\tilde{X}, \tilde{X}_0) \xrightarrow{\partial} \ker i_* \to 0 \]

where the boundary homomorphism \(\partial\) has the right inverse \(\sigma\), and hence the short exact sequence is split in such a way that \(H_1(\tilde{X}, \tilde{X}_0) \cong H_1(\tilde{X}) \oplus \mathbb{Z}[t, t^{-1}]\) where \(\mathbb{Z}[t, t^{-1}]\) stands for a free \(\mathbb{Z}[t, t^{-1}]\)-module of rank 1 generated by \((t-1)\tilde{v}\)

From \([1, \text{Proposition 9.2}]\) we have:

Lemma 2.10. Let \(< x, y | w >\) be a knot group presentation, \(\tilde{x}, \tilde{y}\) lifted 1-cells of \(x, y\) respectively, and \(\tilde{w}\) a lifted 2-cell of \(w\). Then \(H_1(\tilde{X}, \tilde{X}_0)\) admits a \(\mathbb{Z}[t, t^{-1}]\)-module presentation

\[< \tilde{x}, \tilde{y} | \tilde{w} = [\frac{\partial w}{\partial x}]\tilde{x} + [\frac{\partial w}{\partial y}]\tilde{y} > \]

where \(\partial \tilde{x} = ([x] - 1)\tilde{v}\), and \(\partial \tilde{y} = ([y] - 1)\tilde{v}\) for the connecting homomorphism \(\partial : H_1(\tilde{X}, \tilde{X}_0) \to \ker i_*\)

From lemma 2.10, we have:

Proposition 2.11. If a knot group presentation \(< x, y | w >\) is normalized, then \(H_1(\tilde{X})\) admits a \(\mathbb{Z}[t, t^{-1}]\)-module presentation

\[< \tilde{x} | \tilde{w} = [\frac{\partial w}{\partial x}]\tilde{x} > \cong \mathbb{Z}[t, t^{-1}]/(\Delta(t)) \]

Proof. Since \([\frac{\partial w}{\partial y}] = 0\), \(H_1(\tilde{X}, \tilde{X}_0)\) admits a \(\mathbb{Z}[t, t^{-1}]\)-module presentation

\[< \tilde{x}, \tilde{y} | \tilde{w} = [\frac{\partial w}{\partial x}]\tilde{x} > . \]

Furthermore since \(\partial \tilde{y} = (t-1)\tilde{v}\), removing \(\tilde{y}\) corresponding to the free \(\mathbb{Z}[t, t^{-1}]\)-module generator from the presentation of \(H_1(\tilde{X}, \tilde{X}_0)\) we get the desired cyclic module presentation of \(H_1(\tilde{X})\).

\[\square \]

Theorem 1.1 follows from Lemma 2.1 and Proposition 2.11.

References

HYUN-JONG SONG
DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, PUSAN 608-737, KOREA
E-mail address: hjsong@pknu.ac.kr