References
- D. G. Gavin and C. J. Bower, Options for reducing greenhouse gases in the global environment, Proc. of the JAPAN-EC, Japan (1991).
- S. Inoue, T. Tsuruta, and H. Koinuma, Copolymerzation of carbon dioxide and epoxide, J. Polym. Sci. Polym. Lett., 7(4), 287-292 (1969). https://doi.org/10.1002/pol.1969.110070408
-
C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, and O. M. Yaghi, The chemistry of metal-organic frameworks for
$CO_2$ capture, regeneration and conversion, Nat. Rev. Mats., 2, 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45 -
S. H. Cho, B. C. Bai, H. R. Yu, and Y. S. Lee, Carbon capture and
$CO_2/CH_4$ separation technique using porous carbon materials, Appl. Chem. Eng., 22(5), 343-347 (2011). - S. Chu, Carbon capture and sequestration, Science, 325(5948), 1599 (2009). https://doi.org/10.1126/science.1181637
- T. Sakakura, J. C. Choi, and H. Yasuda, Transformation of carbon dioxide, Chem. Rev., 107(6), 2365-2387 (2007). https://doi.org/10.1021/cr068357u
- C. Maeda, Y. Miyazaki, and T. Ema, Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol., 6, 1482-1497 (2014).
-
F. K. Jintu, R. Yadagiri, A. S. Palakkal, R. S. Pilla, Y. Gu, Y. Choe, and D. W. Park, Water-tolerant DUT-series metal-organic frameworks: A theoretical-experimental study for the chemical fixation of
$CO_2$ and catalytic transfer hydrogenation of ethyl levulinate to$\gamma$ -valerolactone, ACS Appl. Mater. Interfaces, 11, 41458-41471 (2019) https://doi.org/10.1021/acsami.9b16834 - C. Federsel, R. Jackstell, and M. Beller, State-of-the-art catalysts for hydrogenation of carbon dioxide, Angew. Chem. Int. Ed., 49, 6254-6257 (2010). https://doi.org/10.1002/anie.201000533
- U. Romano, Dimethyl carbonate and its production technology, Chim. Ind., 75, 303-306 (1993).
- A. A. G. Shaikh and S. Sivaram, Organic carbonates, Chem. Rev., 96(3), 951-976 (1996). https://doi.org/10.1021/cr950067i
- K. Weissermel and H. J. Arpe, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
- S. Zhang, J. Sun, X. Zhang, J. Xun, Q. Miao, and J. Wang, Ionic liquid-based green processes for energy production, Chem. Soc. Rev., 43, 7838-7869 (2014). https://doi.org/10.1039/c3cs60409h
- M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, and F. E. Kuhn, Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?, Angew. Chem. Int. Ed., 50, 8510-8537 (2011). https://doi.org/10.1002/anie.201102010
- G. Fiorani, W. Guo, and A. W. Kleij, Sustainable conversion of carbon dioxide: The advent of organocatalysis, Green Chem., 17, 1375-1389 (2015). https://doi.org/10.1039/C4GC01959H
- D. W. Kim, R. Roshan, J. Tharun, K. A. Cherian, and D. W. Park, Catalytic applications of immobilized ionic liquids for synthesis of cyclic carbonates from carbon dioxide and epoxides, Korean J. Chem. Eng., 30(11), 1973-1984 (2013). https://doi.org/10.1007/s11814-013-0193-6
- Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, and R. Q. Snurr, Computation-Ready, Experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals, Chem. Mater., 26(21), 6185-6192 (2014). https://doi.org/10.1021/cm502594j
- P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, and D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-rganic frameworks for past, present, and future, Chem. Mater., 29(7), 2618-2625 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
- J. Liang, Y. B. Huang, and R. Cao, Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates, Coord. Chem. Rev., 378, 32-65 (2019). https://doi.org/10.1016/j.ccr.2017.11.013
- A. Pramanik, S. Abbina, and G. Das, Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives, Polyhedron, 26, 5225-5234 (2007). https://doi.org/10.1016/j.poly.2007.07.033
- D. Dang, P. Wu, C. He, Z. Xie, and C. Duan, Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis, J. Am. Chem. Soc., 132, 14321-14323 (2010). https://doi.org/10.1021/ja101208s
- P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, and G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun., 27, 2820-2822 (2007). https://doi.org/10.1039/B704325B
- A. Henschel, K. Gedrich, R. Kraehnert, and S. Kaskel, Catalytic properties of MIL-101, Chem. Commun., 35, 4192-4194 (2008).
-
K. Schlichte, T. Kratzke, and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound
$Cu_3(BTC)_2$ , Micro. Meso. Mater., 73, 81-88 (2004). https://doi.org/10.1016/j.micromeso.2003.12.027 - F. Vermoortele, M. Vandichel, B. V. Voorde, R. Ameloot, M. Waroquier, V. V. Speybroeck, and D. E. Vos, Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks, Angew. Chem. Int. Ed., 51, 4887-4890 (2012). https://doi.org/10.1002/anie.201108565
- A. Dhakshinamoorthy, Z. Li, and H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134-8172 (2018). https://doi.org/10.1039/c8cs00256h
- Y. Kishimoto and I. Ogawa, Amine-catalyzed, one-pot coproduction of dialkyl carbonates and 1,2-diols from epoxides, alcohols, and carbon dioxide, Ind. Eng. Chem. Res., 43, 8155-8162 (2004). https://doi.org/10.1021/ie040006n
-
J. W. Huang and M. Shi, Chemical fixation of carbon dioxide by
$NaI/PPh_3/PhOH$ , J. Org. Chem., 68, 6705-6709 (2003). https://doi.org/10.1021/jo0348221 -
J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, and B. Han, MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and
$CO_2$ under mild conditions, Green Chem., 11, 1031-1036 (2009). https://doi.org/10.1039/b902550b -
D. A. Yang, H. Y. Cho, J. Kim, S. T. Yang, and W. S. Ahn,
$CO_2$ capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci., 5, 6465-6473 (2012). https://doi.org/10.1039/C1EE02234B - B. Chen, Z. Yang, Y. Zhua, and Y. Xia, Zeolitic imidazolate frame work materials: Recent progress in synthesis and applications, J. Mater. Chem. A, 2, 16811-16831 (2014). https://doi.org/10.1039/C4TA02984D
- R. Roshith, J. Tharun, B. Robin, G. Y. Hwang, C. K. A. Cherian, D. W. Kim, and D. W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B:Environ., 182, 562-569 (2016). https://doi.org/10.1016/j.apcatb.2015.10.005
-
C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, and M. A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of
$CO_2$ to chloropropene carbonate, ACS Catal., 2, 180-183 (2012). https://doi.org/10.1021/cs200638h - L. Yang, L. Yu, G. Diao, M. Sun, G. Cheng, and S. Chen, Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide, J. Mol. Catal. A, 392, 278-283 (2014). https://doi.org/10.1016/j.molcata.2014.05.033
- T. Jose, Y. Hwang, D. W. Kim, M. I. Kim, and D. W. Park, Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl etherm, Catal. Today, 245, 61-67 (2015). https://doi.org/10.1016/j.cattod.2014.05.022
-
N. Sharma, S. S. Dhankhar, and C. M. Nagaraja, Environment-friendly, co-catalyst- and solvent free fixation of
$CO_2$ using an ionic zinc(II)-porphyrin complex immobilized in porous metal-organic frameworks, Sustain. Energ. Fuels, 3, 2977-2982 (2019). https://doi.org/10.1039/C9SE00282K -
M. Ding and H. Jiang, Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for
$CO_2$ capture and conversion, ACS Catal., 8, 3194-3201 (2018). https://doi.org/10.1021/acscatal.7b03404 - Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329 (2009). https://doi.org/10.1039/b802258p
- J. Liang, R. P. Chen, X. Y. Wang, T. T. Liu, X. S. Wang, Y. B. Huang, and R. Cao, Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides, Chem. Sci., 8, 1570-1575 (2017). https://doi.org/10.1039/c6sc04357g