References
- S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: Synthesis from the homopolymers and a chain extender, Propell. Explos. Pyrot., 42, 826-835 (2017). https://doi.org/10.1002/prep.201600263
- Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propell. Explos. Pyrot., 40, 67-73 (2015). https://doi.org/10.1002/prep.201400005
- E. Diaz, P. Brousseau, and R. Emery, Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003). https://doi.org/10.1002/prep.200390015
- F. M. Betzler, V. A, Hartdegen, T. M. Klapotke, and S. M. Sproll, A new energetic binder: Glycidyl nitramine polymer, Cent. Eur. J. Energ. Mater., 13, 289-300 (2016). https://doi.org/10.22211/cejem/64984
- A. K. Sikder and S. Reddy, Review on energetic thermoplastic elastomers (ETPEs) for military science, Propell. Explos. Pyrot., 38, 14-28 (2013). https://doi.org/10.1002/prep.201200002
- Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastom. Plast., 48, 728-738 (2016). https://doi.org/10.1177/0095244315618699
- J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1226-1232 (2010). https://doi.org/10.1007/s13233-010-1215-4
- A. M. Kawamoto, J. I. S. Oliveira, R. C. L. Dutra, L. C. Rezende, T. Keicher, and H. Krause, Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations, J. Aerosp. Technol. Manag., 1, 35-42 (2009). https://doi.org/10.5028/jatm.2009.01013542
- P. K. Behera, K. M. Usha, P. K. Guchhait, D. Jehnichen, A. Das, B. Voit, and N. K. Singha, A novel ionomeric polyurethane elastomer based on ionic liquid as crosslinker, RSC Adv., 6, 99404-99413 (2019).
- C. Zhang, Y. J. Luo, Q. J. Jiao, B. Zhai, and X. Y. Guo, Application of the BAMO-AMMO alternative block energetic thermoplastic elastomer in composite propellant, Propell. Explos. Pyrot., 39, 689-693 (2014). https://doi.org/10.1002/prep.201300164
- A. Eceiza, M. D. Martin, K. Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008). https://doi.org/10.1002/pen.20905
- J. S. You and S. T. Noh, Rheological and thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers, Polym. Int., 62, 158-164 (2013). https://doi.org/10.1002/pi.4271
- D. K. Chattopadhyay, B. Sreedhar, V. S, Kothapalli, and N. Raju, Effect of chain extender on phase mixing and coating properties of polyurethane ureas, Ind. Eng. Chem. Res., 44, 1772-1779 (2005). https://doi.org/10.1021/ie0492348
- J. Djonlagic and M. S. Nikolic, Thermoplastic copolyester elastomers, Handbook of Engineering and Specialty Thermoplastics, 3, 377-428 (2011).
- J. S. Kim, D. K. Kim, J. O. Kweon, J. M. Lee, S. T. Noh, and S. Y. Kim, Effects of annealing temperature on thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane, Appl. Chem. Eng., 24, 305-313 (2013).
- O. C. Elena, A. A. Francisca, M. T. P. Ana, and O. B. Cesar, Characterization of polyurethanes containing different chain extenders, Prog. Rubber Plast. Re., 27, 145-160 (2011).
- J. S. You, S. C. Kang, S. K. Kweon, H. L. Kim, Y. H. Ahn, and S. T. Noh, Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant, Thermochim. Acta, 537, 51-56 (2012). https://doi.org/10.1016/j.tca.2012.02.032
- H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018). https://doi.org/10.1039/C8RA03643H
- S. M. Pedreira, J. R. A. Pinto, E. A. Campos, E. D. C. Mattos, M. S. O. Junior, J. I. S. Oliveira, and R. C. L. Dutra, Methodologies for characterization of aerospace polymers/energetic materials- a short review, J. Aerosp. Technol. Manag., 8, 18-25 (2016). https://doi.org/10.5028/jatm.v8i1.576
- Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012). https://doi.org/10.1002/pen.22140
- Y. Li, G. Li, J. Li, and Y. Luo, Preparation and properties of semi-interpenetrating networks combined by thermoplastic polyurethane and a thermosetting elastomer, New J. Chem., 42, 3087-3096 (2018). https://doi.org/10.1039/c7nj03841k
- Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2005). https://doi.org/10.1163/1568555053603215
- B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016). https://doi.org/10.1007/s10973-016-5524-5
-
E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and
$Alex^{(R)}$ , Propell. Explos. Pyrot., 28, 210-215 (2003). https://doi.org/10.1002/prep.200300007 - S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-poly(BAMO) copolymer, Polym. Degrad. Stabil., 92, 1365-1377 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
- S. Hafner, T. Keicher, and T. M. Klapotke, Copolymers based on GAP and 1,2-epoxyhexane as promising prepolymers for energetic binder systems, Propell. Explos. Pyrot., 43, 126-135 (2018). https://doi.org/10.1002/prep.201700198
- E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Heat of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003). https://doi.org/10.1002/prep.200390015