DOI QR코드

DOI QR Code

Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides

단당류와 이당류를 환원제로 합성한 은 나노입자의 Resazurin 산화환원반응 메커니즘

  • Park, Young Joo (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Chang, Ji Woong (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 박영주 (금오공과대학교 화학공학과) ;
  • 장지웅 (금오공과대학교 화학공학과)
  • Received : 2020.04.17
  • Accepted : 2020.04.29
  • Published : 2020.06.10

Abstract

Nanoparticles play an important role as a catalyst in many chemical syntheses. Colloidal nanoparticles were usually synthesized with reducing, capping, and shape directing agents which induce surface poisoning of catalysts. A new green synthesis for silver nanoparticles was developed by utilizing less additives which could be a hazardous waste. A crystallization technique was employed to reduce the amount of reducing and capping agents during synthesis resulting in less surface poisoning of the nanoparticle. The synthesized Ag nanoparticles using monosaccharides and disaccharides as reducing agents could be used as a catalyst for the redox reaction of resazurin and the mechanism of the reaction using Ag nanoparticles was studied.

나노입자는 많은 화학합성에서 중요한 촉매역할을 한다. 촉매로 이용되는 나노입자를 합성할 때 colloidal synthesis를 많이 활용하고 있다. Colloidal synthesis를 이용해 나노입자를 합성할 경우 환원제, capping agent, shape directing agent 등이 촉매에 surface poisoning을 일으켜 촉매의 특성이 낮아질 수 있으며 합성 및 분리 과정 중 유해폐기물의 발생한다. Colloidal synthesis에서 사용되는 첨가제들의 양을 줄여 합성할 수 있는 새로운 나노입자를 합성법을 개발하여 은나노입자를 합성하였다. 결정화 기술을 이용하여 환원제, capping agent의 양을 줄일 수 있고 더욱이 합성된 나노입자 표면의 흡착되는 물질의 양을 줄여 surface poisoning을 낮출 수 있었다. 환원제로는 단당류와 이당류를 이용하여 surface poisoning이 거의 없는 은 나노입자는 resazurin의 산화환원 반응의 촉매로 이용할 수 있어 은 나노입자를 이용한 촉매 반응의 메커니즘을 분석하였다.

Keywords

References

  1. S. Linden, J. Kuhl, and H. Giessen, Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction, Phys. Rev. Lett., 86, 4688-4691 (2001). https://doi.org/10.1103/PhysRevLett.86.4688
  2. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999). https://doi.org/10.1021/jp9917648
  3. C. A. Mirkin, R. L. Letsinger, R. C. Mucic & J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature., 382, 607-609 (1996). https://doi.org/10.1038/382607a0
  4. T. Okamoto, I. Yamaguchi, and T. Kobayashi, Local plasmon sensor with gold colloid monolayers deposited upon glass substrates, Opt. Lett., 25, 372-374 (2000). https://doi.org/10.1364/OL.25.000372
  5. J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55-75 (1951). https://doi.org/10.1039/DF9511100055
  6. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid mon-olayers: An approach to SERS substrates, Science, 267, 1629-1632 (1995). https://doi.org/10.1126/science.267.5204.1629
  7. N. Nath and A. Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface, Anal. Chem., 74, 504-509 (2002). https://doi.org/10.1021/ac015657x
  8. M. Sastry, N. Lala, V. Patil, S. P. Chavan, and A. G. Chittiboyina, Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles, Langmuir, 14, 4138-4142 (1998). https://doi.org/10.1021/la9800755
  9. S. Lin, S. Liu, C. Lin, and C. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles, Anal. Chem., 74, 330-335 (2002). https://doi.org/10.1021/ac0156316
  10. I. K. Sen, K. Maity, and S. S. Islam, Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity, Carbohydr. Polym., 91, 518-528 (2013). https://doi.org/10.1016/j.carbpol.2012.08.058
  11. F. Zaera, A. J. Gellman, and G. A. Somorjai, Surface science studies of catalysis: Classification of reactions, Acc. Chem. Res., 19, 24-31 (1986). https://doi.org/10.1021/ar00121a004
  12. G. C. Bond, Strategy of research on supported metal catalysts. Problems of structure-sensitive reactions in the gas phase bonds, Acc. Chem. Res., 26, 490-495 (1993). https://doi.org/10.1021/ar00033a006
  13. T. Pal, T. K. Sau, and N. R. Jana, Silver hydrosol, organosol, and reverse micelle-stabilized sol - A comparative study, J. Colloid Interface Sci., 202, 30-36 (1998). https://doi.org/10.1006/jcis.1997.5353
  14. J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev., 87, 877-899, (1987). https://doi.org/10.1021/cr00081a002
  15. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, andn M. A. E. Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science, 272, 1924-1925 (1996). https://doi.org/10.1126/science.272.5270.1924
  16. D. M. Hercules, A. Proctor, and M. Houalla, Quantitative analysis of mixed oxidation states in supported catalysts hercules, Acc. Chem. Res., 27, 387-393 (1994). https://doi.org/10.1021/ar00048a001
  17. S. A. Aromal, K. V. D. Babu, and D. Philip, Characterization and catalytic activity of gold nanoparticles synthesized usingayurvedic arishtams, Spectrochim. Acta A, 96, 1025-1030 (2012). https://doi.org/10.1016/j.saa.2012.08.010
  18. R. Xu, D, Wang J. Zhang, and Y. Li, Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene, Chem. Asian J., 1, 888-893 (2006). https://doi.org/10.1002/asia.200600260
  19. K. Kuroda, T. Ishida, and M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Aunanoparticles deposited on PMMA, J. Mol. Catal. A. Chem., 298, 7-11 (2009). https://doi.org/10.1016/j.molcata.2008.09.009
  20. T. Zhao, R.Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, and R. Due, Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surf., 366, 197-202 (2010). https://doi.org/10.1016/j.colsurfa.2010.06.005
  21. D. Kim, S. Jeong, and J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, Nanotechnology, 17, 4019-4024 (2006). https://doi.org/10.1088/0957-4484/17/16/004
  22. Y. Xia and Y. Sun, Shape-controlled synthesis of gold and silver nanoparticles, Science, 13, 2176-2179 (2002). https://doi.org/10.1126/science.1077229
  23. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone), Langmuir, 12, 909-912 (1996). https://doi.org/10.1021/la950435d
  24. C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, and S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5, 244-249 (2005). https://doi.org/10.1166/jnn.2005.034
  25. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Y. Ziganshina, and V. V. Yanilkin, Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 50, 69-72 (2015). https://doi.org/10.1016/j.elecom.2014.11.016
  26. Z. Moradi, K. Akhbaria, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver (I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017). https://doi.org/10.1016/j.molstruc.2016.12.001
  27. M. Sumithra, Y. Aparna, P. R. Rao, K. S. Reddy, and P. R. Reddy, Morphological change of silver nanoparticles by the effect of synthesis parameters, Mater. Today, 3, 2278-2283 (2016). https://doi.org/10.1016/j.matpr.2016.04.137
  28. C. He, L. Liu, Z. Fang, J. Li, J. Guo, and J. Wei, Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation, Ultrason. Sonochem., 21, 542-548 (2014). https://doi.org/10.1016/j.ultsonch.2013.09.003
  29. V. K. Sharma, R. A. Yngard, and Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145, 83-96 (2009). https://doi.org/10.1016/j.cis.2008.09.002
  30. V. Kabashin and M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, J. Appl. Phys., 94, 7941-7943 (2003). https://doi.org/10.1063/1.1626793
  31. S. Simoncelli, E. L. Pensa, T. Brick, J. Gargiulo, A. Lauri, J. Cambiasso, Y. Li, S. A. Maierac, and E. Cortes, Monitoring plasmonic hot-carrier chemical reactions at the single particle level, Faraday Discuss., 214, 73-87, (2019). https://doi.org/10.1039/C8FD00138C
  32. P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels Rontgenstrahlen, nachrichten von der gesellschaft der wissenschaften Gottingen, Mathematisch-Physikalische Klasse, 2, 98-100, (1918).
  33. J. I. Langford and A. J. C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102-103 (1978). https://doi.org/10.1107/S0021889878012844
  34. V. Amendola and M. Meneghetti, Size evaluation of gold nanoparticles by UV-vis spectroscopy, J. Phys. Chem., 113, 4277-4285 (2009).