DOI QR코드

DOI QR Code

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng (Department of Structural Engineering, Tongji University) ;
  • Li, Zheng (Department of Structural Engineering, Tongji University) ;
  • He, Minjuan (Department of Structural Engineering, Tongji University)
  • Published : 2020.06.01

Abstract

Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Keywords

References

  1. Akbas, T., Sause, R., Ricles, J. M., Ganey, R., Berman, J., Loftus, S., Daniel, J. D., Pei, S. L., van de Lindt, J., Blomgren, H. E. (2017). "Analytical and experimental lateral-load response of self-centering post-tensioned CLT walls." J. Struct. Eng., 143(6), 04017019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001733
  2. Blomgren, H. E., Pei, S., Jin, Z., Powers, J., Dolan, J. D., van de Lindt, J. W. (2019). "Full-scale shake table testing of cross-laminated timber rocking shear walls with replaceablecomponents." J. Struct. Eng., 145(10), 04019115. https://doi.org/10.1061/(asce)st.1943-541x.0002388
  3. Buchanan, A., Iqbal, A., Palermo, A. G., Pampanin, S. (2007). "Improved seismic performance of LVL post-tensioned walls coupled with UFP devices." In: 8th Pacifc conf. On earthquake engineering. New Zealand Society for Earthquake Engineering and Nanyang Technological Univ., School of Civil and Environmental Engineering, Wellington, New Zealand, 1-9.
  4. Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C., Kawai, N. (2013). "SOFIE project- 3D shaking table test on a seven-storey full-scale cross-laminated building." Earthq. Eng. Struct. Dyn., 42(13), 2003-2021. https://doi.org/10.1002/eqe.2309
  5. Chen, Z., Popovski, M., Iqbal, A. (2020). "Structural performance of post-tensioned CLT shear walls with energy dissipaters." J. Struct. Eng., 146(4), 04020035. https://doi.org/10.1061/(asce)st.1943-541x.0002569
  6. Cornell, C. A., Jalayer, F., Hamburger, R. O., Foutch, D. A. (2002). "Probabilistic basis for 2000 SAC federal emergencymanagement agency steel moment frame guidelines." J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
  7. Deng, P., Pei, S., van de Lindt, J., John, W., Omar Amini, M., Liu, H. (2019). "Lateral behavior of panelized CLT walls: A pushover analysis based on minimal resistance assumption." Eng, Struct., 191, 469-478. https://doi.org/10.1016/j.engstruct.2019.04.080
  8. Ganey, R., Berman, J., Akbas, T., Loftus, S., Daniel Dolan, J., Sause, R., Ricles, J., Pei, S. L., van de Lindt, J., Blomgren, H. E. (2017). "Experimental investigation of self-centering crosslaminated timber walls." J. Struct. Eng., 143(10), 04017135. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001877
  9. Gavric, I., Fragiacomo, M., Ceccotti, A. (2015). "Cyclic behavior of CLT wall systems: experimental tests and analytical prediction models." J. Struct. Eng., 141(11), 04015034. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001246
  10. He, M. J., Sun, X. F., Li, Z. (2018). "Bending and compressive properties of cross-laminated timber (CLT) panels made from Canadian hemlock." Constr. Build. Mater., 185, 175-183. https://doi.org/10.1016/j.conbuildmat.2018.07.072
  11. Hong, H. P., Yang, S. C. (2019). "Reliability and fragility assessment of the mid-and high-rise wood buildings subjected to bidirectional seismic excitation." Eng. Struct.,201, 109734. https://doi.org/10.1016/j.engstruct.2019.109734
  12. Li, M., Lam, F., Foschi, R. O., Nakajima, S., Nakagawa, T. (2012). "Seismic performance of post-and-beam timber buildings II: reliability evaluations." J. Wood. Sci., 58(2), 135-143. https://doi.org/10.1007/s10086-011-1232-8
  13. Mahsuli, M., Haukaas, T. (2013). "Computer program for multi-model reliability and optimization analysis." J. Comput. Civil. Eng., 27(1), 87-98. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000204
  14. GB 50068 (2018). Unified standard for reliability design of building structures. Ministry of Construction of the People's Republic of China. Beijing, China. (in Chinese).
  15. Newcombe, M. P., Pampanin, S., Buchanan, A. H. (2010). "Design, fabrication and assembly of a two-storey post-tensioned timber building." In: Proc. World Conference on Timber Engineering, Trentino, Italy, 3092-3100.
  16. Padgett, J. E., Nielson, B. G., DesRoches, R. (2008). "Selectionof optimal intensity measures in probabilistis seismic demand models of highway bridge portfolios." Earthq. Eng. Struct. Dyn., 37(5), 711-725. https://doi.org/10.1002/eqe.782
  17. Pai, S. G. S., Lam, F., Haukaas, T. (2017). "Force Transfer around openings in Cross-laminated timber shear walls." J. Struct. Eng., 143(4), 4016215. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001674
  18. Palermo, A., Pampanin, S., Buchanan, A. (2006). "Experimentalinvestigations on LVL seismic resistant wall and frame subassemblies." In: Proc. Of frst European conference on earthquake engineering and seismology, Geneva, Switzerland, No. 983.
  19. Pei, S., van de Lindt, J. W., Barbosa, A. R., Berman, J. W., McDonnell, E., Daniel Dolan, J., et al. (2019). "Experimental seismic response of a resilient 2-story mass-timber building with post-tensioned rocking walls." J. Struct. Eng., 145(11), 04019120. https://doi.org/10.1061/(asce)st.1943-541x.0002382
  20. Porcu, M. C., Bosu, C., Gavric, I. (2018). "Non-linear dynamic analysis to assess the seismic performance of cross-laminated timber structures." J. Build. Eng., 19, 480-493. https://doi.org/10.1016/j.jobe.2018.06.008
  21. Sarti, F., Palermo, A., Pampanin, S., Berman, J. (2017). "Deter-mination of the seismic performance factors for post-tensioned rocking timber wall systems: seismic performance factors for post-tensioned timber wall systems." Earthq. Eng. Struct. Dyn., 46, 181-200. https://doi.org/10.1002/eqe.2784
  22. Sarti, F., Palermo, A., Pampanin, S. (2015). "Quasi-static cyclic testing of two-thirds scale un-bonded post-tensioned rocking dissipative timber walls." J. Struct. Eng., 142(4), E4015005. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001291
  23. Shahnewaz, M., Popovski, M., Tannert, T. (2019). "Resistanceof cross-laminated timber shear walls for platform-type construction." J. Struct. Eng., 145(12), 4019149. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002413
  24. Shu, Z., Li, S., Sun, X. F., He, M. J. (2019). "Performance-based seismic design of pendulum tuned mass damper system." J. Earthq. Eng., 23(2), 334-355. https://doi.org/10.1080/13632469.2017.1323042
  25. Smith, T., Ludwig, F., Pampanin, S., Fragiacomo, M., Buchanan, A., Deam, B., Palermo, A. (2007). "Seismic response of hybrid-LVL coupled walls under quasi-static and pseudodynamic testing." In: Proc. Of New Zealand society for earthquake engineering conference, Palmerston North, New Zealand, Vol. 8.
  26. Stellacci, S., Rato, V., Poletti, E., et al. (2018). "Multi-criteriaanalysis of rehabilitation techniques for traditional timber frame walls in Pombalino buildings (Lisbon)." J. Build. Eng., 16, 184-198. https://doi.org/10.1016/j.jobe.2018.01.001
  27. Sun, X. F., He, M. J., Li, Z., Lam, F. (2019). "Seismic performance assessment of conventional CLT shear wall structures and post-tensioned CLT shear wall structures." Eng. Struct., 196, 109285. https://doi.org/10.1016/j.engstruct.2019.109285
  28. Sun, X. F., He, M. J., Li, Z. (2020a). "Experimental and analytical lateral performance of post-tensioned CLT shear walls and conventional CLT shear walls." J. Struct. Eng., DOI: 10.1061/(ASCE)ST.1943-541X.0002638.
  29. Sun, X. F., He, M. J., Li, Z., Lam, F. (2020b). "Seismic performance of energy-dissipating post-tensioned CLT shear wall structures I: Shear wall modeling and design procedure." Soil. Dyn. Earthq. Eng., 131, 106022. https://doi.org/10.1016/j.soildyn.2019.106022
  30. Sun, X. F., He, M. J., Li, Z., Lam, F. (2020c). "Seismic performance of energy-dissipating post-tensioned CLT shear wall structures II: Dynamic analysis and dissipater comparison." Soil. Dyn. Earthq. Eng., 130, 105980. https://doi.org/10.1016/j.soildyn.2019.105980
  31. van de Lindt, J. W., Walz, M. A. (2003). "Development and application of wood shear wall reliability model." J. Struct. Eng., 129(3), 405-413. https://doi.org/10.1061/(asce)0733-9445(2003)129:3(405)
  32. van de Lindt, J. W., John, W., Furley, J., Amini, M. O., Pei, S., Tamagnone, G., Barbosa, A. R., et al. (2019). "Experimentalseismic behavior of a two-story CLT platform building." Eng. Struct., 183, 408-422. https://doi.org/10.1016/j.engstruct.2018.12.079
  33. Wilson, A. W., Motter, C. J., Phillips, A. R., Dolan, J. D. (2019). "Modeling techniques for post-tensioned cross-laminated timber rocking walls." Eng. Struct., 195, 299-308. https://doi.org/10.1016/j.engstruct.2019.06.011
  34. Zhang, J., Huo, Y. L. (2009). "Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method." Eng. Struct., 31(8), 1648-1660. https://doi.org/10.1016/j.engstruct.2009.02.017
  35. Zhang, X., Shahnewaz, M., Tannert, T. (2018). "Seismic reliability analysis of a timber steel hybrid system." Eng. Struct., 167: 629-638. https://doi.org/10.1016/j.engstruct.2018.04.051