DOI QR코드

DOI QR Code

Intake, digestibility, and performance of lambs fed spineless cactus cv. Orelha de Elefante Mexicana

  • 투고 : 2019.04.23
  • 심사 : 2019.08.05
  • 발행 : 2020.08.01

초록

Objective: To evaluate the effects of the carmine cochineal-resistant spineless cactus genotypes cv. Orelha de Elefante Mexicana (Opuntia) and Miúda (Nopalea) on the intake and digestibility of nutrients, ingestive behavior, performance, and ultrasound measurements of growing lambs. Methods: Thirty-six male (non-castrated) Santa Inês lambs were used, with an average age of 6 months and an initial average weight of 22.0±2.9 kg. They were distributed in a completely randomized design with 3 treatments (Tifton hay, Nopalea and Opuntia) and 12 replications, using initial weight as a covariate. The experimental period was 86 days, with the first 30 days used for the adaptation of the animals to the facilities, diets and management, and the remaining 56 days used for evaluation and data collection. Results: The intake and apparent digestibility of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), total carbohydrates (TC), non-fibrous carbohydrates (NFC), and total digestible nutrients (TDN) showed a significant difference (p<0.05) as a function of the diets, with the Nopalea treatment (p<0.05) increasing DM intake (g/kg and % body weight [BW]), CP, TDN, and TC digestibility, whereas the Tifton hay diet led to a high (p<0.001) neutral detergent fiber corrected for ash and protein (NDFap) g/d intake, NDFap (BW %) and digestibility of said nutrient. There was no effect of treatments (p>0.05) on feeding time, however, rumination time and total chewing time were higher (p<0.05) for animals fed Tifton hay. The performance of the animals was similar (p>0.05). For the ultrasound measurements, Nopalea promoted an increase in the final loin eye area, compared to Tifton hay. Conclusion: The use of spineless cactus variety Miúda leads to the greater intake and digestibility of nutrients. The evaluated carmine cochineal-resistant spineless cactus genotypes are alternatives for semi-arid regions as they do not negatively affect the performance of growing lambs.

키워드

참고문헌

  1. Gusha J, Halimani TE, Katsande S, Zvinorova PI. The effect of Opuntia ficus indica and forage legumes based diets on goat productivity in smallholder sector in Zimbabwe. Small Rumin Res 2015;125:21-5. https://doi.org/10.1016/j.small rumres.2015.02.018
  2. Wanderley WL, Ferreira MA, Batista AMV, et al. Intake, digestibility and ruminal measures in sheep feed silage and hay in association with cactus pear. Rev Bras Saude Prod Anim 2012;13:444-56. https://doi.org/10.1590/S1519-9940 2012000200013
  3. Cardoso DB, Carvalho FFR, Medeiros GR, et al. Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Anim Feed Sci Technol 2019;247:23-31. https://doi.org/10.1016/j.anifeedsci.2018.10.016
  4. Costa RG, Trevino IH, Medeiros GR, AN Medeiros, Pintoa TF, Oliveirac RL. Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Ines lambs. Small Rumin Res 2012;102:13-7. https://doi.org/10.1016/j.smallrumres.2011.09.012
  5. Silva RC, Ferreira MA, Oliveira JCV, et al. Orelha de Elefante Mexicans (Opuntia stricta [Haw.] Haw.) spineless cactus as an option in crossbred dairy cattle diet. S Afr J Anim Sci 2018;48:516-25. http://dx.doi.org/10.4314/sajas.v48i3.12
  6. Gebremariam T, Melaku S, Yami A. Effect of different levels of cactus (Opuntia ficus-indica) inclusion on feed intake, digestibility and body weight gain in tef (Eragrostis tef) straw-based feeding of sheep. Anim Feed Sci Technol 2006;131:43-52. https://doi.org/10.1016/j.anifeedsci.2006.02.003
  7. Batista AMV, Ribeiro Neto AC, Lucena RB, Santos DC, Dubeux JB, Mustafa AF. Chemical composition and ruminal degradability of spineless cactus grown in Northeastern Brazil. Rangel Ecol Manag 2009;62:297-301. https://doi.org/10.2111/07-099R1.1
  8. National Research Council (NRC). Nutrient requirements of small ruminants: sheep, goats, cervids, and New World camelids. Washington, DC, USA: National Academy Press; 2007. https://doi.org/10.17226/11654
  9. Association of Official Analytical Chemists (AOAC), Official methods of analysis, 15th ed. Arlington, VA, USA: AOAC International; 1990.
  10. Mertens, DR. Gravimetric determination of amylase treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. J AOAC Int. 2002;85:1217-40.
  11. Licitra G, Hernandez TM, Van Soest PJ. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol 1996;57:347-58. https://doi.org/10.1016/0377-8401(95)00837-3
  12. Senger CCD, Kozloski GV, Sanchez LMB, FR Mesquita, Alves TP, Castagnino DS. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim Feed Sci Technol 2008;146:169-74. https://doi.org/10.1016/j.anifeedsci.2007.12.008
  13. Van Soest PJ, Robertson JB. Analysis of forages and fibrous foods. Ithaca, NY, USA: Cornell University; 1985.
  14. Sniffen CJ, O'Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 1992;70:3562-77. https://doi.org/10.2527/1992.70113562x
  15. Hall MB. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Gainesville, FL, USA: University of Florida; 2000.
  16. Valente TNP, Detmann E, Valadares Filho SC, et al. In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. R Bras Zootec 2011;40:666-75. https://doi.org/10.1590/S1516-35982011000 300027
  17. Weiss WP. Energy prediction equations for ruminant feeds. In: Proceedings of the Cornell Nutrition Conference for Feed Manufacturers; 1999 Oct 19-21; Rochester, NY. Ithaca, NY, USA: Cornell University; 1999. p. 176-85.
  18. Mehrez AZ, Orskov ER. A study of artificial fibre bag technique for determining the dig estibility of feeds in the rumen. J Agric Sci 1977;88:645-50. https://doi.org/10.1017/S0021 859600037321
  19. Orskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci 1979;92:499-503. https://doi.org/10.1017/S0021859600063048
  20. Martin P, Bateson P. Measuring behavior: an introductory guide. 2th ed. New York, USA: Cambridge University Press; 1993.
  21. Vieira EL, Batista AMV, Guim A, et al. Effects of hay inclusion on intake, in vivo nutrient utilization and ruminal fermentation of goats fed spineless cactus (Opuntia ficus-indica Mill) based diets. Anim Feed Sci Technol 2008;141:199-208. https://doi.org/10.1016/j.anifeedsci.2007.05.031
  22. Siqueira MCB, Ferreira MA, Monnerat JPIDS, et al. Optimizing the use of spineless cactus in the diets of cattle: total and partial digestibility, fiber dynamics and ruminal parameters. Anim Feed Sci Technol 2017;226:56-64. https://doi.org/10.1016/j.anifeedsci.2016.12.006
  23. Rapisarda T, Mereu A, Cannas A, Belvedere G, Licitra G, Carpino S. Volatile organic compounds and palatability of concentrates fed to lambs and ewes. Small Rumin Res 2012;103:120-32. https://doi.org/10.1016/j.smallrumres.2011.08. 011
  24. Silva ETDS, Melo AASD, Ferreira MA, et al. Acceptability by Girolando heifers and nutritional value of erect prickly pear stored for different periods. Pesq Agropec Bras 2017;52:761-7. https://doi.org/10.1590/s0100-204x2017000900008
  25. Costa CTF, Ferreira MA, Campos JMS, et al. Intake, total and partial digestibility of nutrients, and ruminal kinetics in crossbreed steers fed with multiple supplements containing spineless cactus enriched with urea. Livest Sci 2016;188:55-60. https://doi.org/10.1016/j.livsci.2016.04.008
  26. Ferreira MA, Silva FM, Bispo SV, Azevedo M. Strategies for the supplementation of dairy cows in the Brazilian semi-arid. R Bras Zootec 2009;38:322-9. https://doi.org/10.1590/S1516-35982009001300032
  27. Tosto MSL, Araujo GGL, Ribeiro LGP, et al. In vitro rumen fermentation kinetics of diets containing oldman saltbush hay and forage cactus, using a cattle inoculum. Arq Bras Med Vet Zootec 2015;67:149-58. https://doi.org/10.1590/1678-6937
  28. Moraes GSO, Guim A, Tabosa JN, Chagas JCC, Almeida MP, Ferreira MA. Cactus [Opuntia stricta (Haw.) Haw] cladodes and corn silage: how do we maximize the performance of lactating dairy cows reared in semiarid regions? Livest Sci 2019;221:133-8. https://doi.org/10.1016/j.livsci.2019.01.026
  29. Silva SR. Use of ultrasonographic examination for in vivo evaluation of body composition and for prediction of carcass quality of sheep. Small Rumin Res 2017;152:144-57. https://doi.org/10.1016/j.smallrumres.2016.12.020

피인용 문헌

  1. Effect of Prickly Pear Cactus Peel Supplementation on Milk Production, Nutrient Digestibility and Rumen Fermentation of Sheep and the Maternal Effects on Growth and Physiological Performance of Suckli vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091476
  2. Carcass characteristics and meat quality of lambs fed with cassava foliage hay and spineless cactus vol.92, pp.1, 2020, https://doi.org/10.1111/asj.13519
  3. Cactus (Opuntia and Nopalea) nutritive value: A review vol.275, 2021, https://doi.org/10.1016/j.anifeedsci.2021.114890
  4. Cactus cladodes cause intestinal damage, but improve sheep performance vol.53, pp.2, 2020, https://doi.org/10.1007/s11250-021-02731-1
  5. Miúda (Nopalea cochenillifera (L.) Salm-Dyck)-The Best Forage Cactus Genotype for Feeding Lactating Dairy Cows in Semiarid Regions vol.11, pp.6, 2020, https://doi.org/10.3390/ani11061774