


# Backbone NMR Assignments of WW2 domain from human AIP4

## Min-Duk Seo<sup>1,2,\*</sup>

<sup>1</sup>Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea

<sup>2</sup>College of Pharmacy, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea

Received June 10, 2020; Revised June 16, 2020; Accepted June 17, 2020

Abstract WW domains are small protein modules consisting of three-stranded antiparallel  $\beta$ -sheet, and involved in the protein-protein interaction for various biological systems. We overexpressed and purified WW2 domain from human AIP4/Itch (a member of Nedd4 family) using a pH/temperature dependent cleavage system. The backbone assignments of WW2 domain were completed, and secondary structure was predicted. Furthermore, backbone flexibility of WW2 domain was determined by  $^1H^{-15}N$  heteronuclear NOE and amide hydrogen exchange experiments. The structural information would contribute to the structural determination of WW2 domain as well as the interaction study of WW2 domain with various binding partners.

**Keywords** WW2 domain, backbone NMR assignments, secondary structure, backbone flexibility

### Introduction

AIP4/Itch is a HECT type E3 ubiquitin ligase, and a member of Nedd4 (neural precursor cell expressed developmentally downregulated protein 4) family. The proteins of Nedd4 family share the similar domain structure, an amino terminal C2 domain, three or four WW domains, and a carboxyl terminal

HECT domain.<sup>2,3</sup>

WW domains are small protein modules that are found in many eukaryotes.4 The two conserved tryptophan residues of WW domain are spaced 20-22 amino acids apart and play a crucial role in its structure and function.5 WW domains are typically 35 to 40 amino acids in length and consist of three β-strands forming an antiparallel β-sheet.<sup>4,6,7</sup> WW domains have been classified into four groups based on their binding to ligands.8-10 Group I WW domains recognize Pro-Pro-X-Tyr (PPXY or PY motifs), and Nedd4 family proteins contain group I WW domains. Group II WW domains bind Pro-Pro-Leu-Pro (PPLP) motifs. Group III and group IV WW domains recognize PR motifs (polyproline motifs flanked by Arg or Lys) and p(S/T)P motifs (phosphorylated serine/threonine-proline sites), respectively.

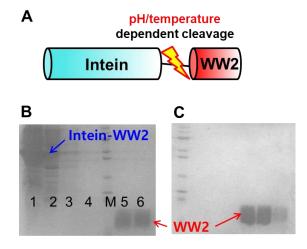
The WW domain is one of the smallest protein modules that is stable as a monomer, and the WW domain has been a major protein-protein interaction module widely distributed in all biological systems. Here, we report the backbone resonance assignments of WW2 domain from human AIP4/Itch. The secondary structure prediction and backbone dynamics of WW2 domain are also determined.

#### **Experimental Methods**

<sup>\*</sup> Address correspondence to: **Min-Duk Seo**, Department of Molecular Science and Technology & College of Pharmacy, Ajou University, Suwon, Gyeonggi 16799, Republic of Korea, Tel: 82-31-219-3450; Fax: 82-31-219-3435; E-mail: mdseo@ajou.ac.kr

Gene cloning - The gene encoding the WW2 domain of human AIP4 was purchased from GenScript Corporation (120 Centennial Ave, Piscataway, NJ 08854, USA). The gene encoding WW2 domain was amplified by polymerase chain reaction (PCR), and the amplified products were inserted between the NcoI and PstI sites in pTWIN1 for N-terminal Ssp DnaB intein fusion. The sequence of WW2 domain contained the N-terminal GRA tag (G1, R2, and A3) derived from pTWIN1 vector and additional glycine residue (G5) inserted during the cloning.

Expression and purification - The recombinant plasmid was transformed into Escherichia coli strain BL21(DE3) codon plus competent cells. Protein expression was induced by addition of 0.5 mM IPTG when the OD<sub>600</sub> reached 0.6. After 4 h induction at 37°C, cells were harvested by centrifugation. The cell pellets were resuspended in the lysis buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, pH 8.5), and lysed by sonication. The supernatant was applied to a chitin column equilibrated with buffer containing 20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, pH 8.5. Bound intien-WW2 domain was washed and performed on-column cleavage with elution buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, pH 7.0) at room temperature for 12 h. Cleaved WW2 domain was eluted with elution buffer. Protein samples were collected and analyzed by SDS-PAGE. The fraction of the protein was concentrated and further purified using size exclusion chromatography (Superdex 75 10/300; Amersham Biosciences). Uniformly [15N]- or [15N, 13C]- labeled WW2 domain was prepared by growing the cells in M9 minimal medium. NMR samples were prepared as described above, and labeled protein was dissolved in 90% H<sub>2</sub>O/10% D<sub>2</sub>O, containing 100 mM NaCl, 50 mM sodium phosphate, 1 mM EDTA, pH 6.0.


NMR experiments and backbone assignment- All NMR spectra for backbone assignment were recorded at 303K on a Bruker AVANCE 600 spectrometer equipped with a cryoprobe. Backbone assignments were performed with the HNCA, HNCACB, and HNCO, and confirmed with HNCACO. Chemical

shifts were referenced to DSS externally. The <sup>1</sup>H-<sup>15</sup>N heteronuclear NOE experiment was recorded under the same conditions. The heteronuclear NOE values were determined from the ratio of the average intensities of the with (NOE experiment) and without (NONOE experiment) a proton presaturation.<sup>12,13</sup> All NMR spectra were processed using NMRPipe/NMRDraw software<sup>14</sup> and analyzed with NMRView program.<sup>15</sup>

Amide hydrogen exchange experiments – For amide hydrogen exchange experiment,  $^{15}$ N-labeled WW2 was lyophilized from buffer. The NMR measurement was started immediately after the addition of  $D_2O$  to a lyophilized sample.  $^1$ H- $^{15}$ N HSQC spectra of WW2 domain dissolved in  $D_2O$  were obtained at 288K on a Bruker DRX 500 spectrometer.

#### **Results and Discussion**

Protein purification – To facilitate the purification of WW2 domain, we employed pH/temperature



**Figure 1.** Purification of WW2 domain. (A) Schematic representation of pH/temperature dependent cleavage. (B) On-column cleavage results of WW2 domain. Lanes: 1, cell-lysate of intein-WW2 domain fusion protein; 2, flow-through; 3, washing; 4, flow-through during buffer change; M, molecular weight marker; 5-6, elution fractions after on-column cleavage. (C) Fractions of WW2 domain from a Superdex 75 column.

dependent cleavage method using Ssp DnaB intein fusion system (Figure 1A). The intein-fused WW2 domain was well-expressed as soluble form. The fusion protein (intein-WW2 domain) was efficiently cleaved by decreasing pH (from 8.5 to 7.0) and increasing temperature (from 4°C to 24°C). After on-column cleavage, intein proteins were still bound to the column and unfused WW2 domain could be obtained (Figure 1B). The eluted WW2 domains were further purified by size exclusion chromatography (Figure 1C).

Backbone assignment of WW2 domain - The backbone amide (1HN and 15N) resonances of WW2 domain were completely assigned except 4 prolines and N-terminal glycine and arginine (Figure 2). Carbon resonances (Cα, Cβ, CO) were also assigned. The finally assigned chemical shifts of <sup>1</sup>H<sup>N</sup>, <sup>15</sup>N, <sup>13</sup>Cα, <sup>13</sup>Cβ and <sup>13</sup>CO are summarized in table 1.

Secondary structure of WW2 domain - The secondary structure of WW2 domain was predicted on the basis of chemical shifts (Figure 3). Delta values of backbone carbon to random coil chemical shift ( $\delta C\alpha - \delta C\beta$ ) were used. 16 Plot of delta values indicates the presence of three potential β-strand regions. We also employed CSI and TALOS+ programs to predict the secondary structure of WW2 domain.<sup>17,18</sup> Although CSI results predicted two potential β-strands, TALOS+ and delta value plot

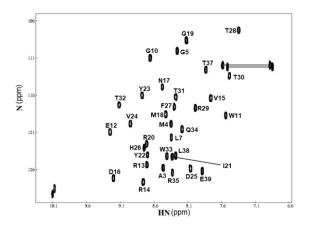



Figure 2. 2D-[1H-15N] HSQC spectrum of WW2 domain. Each resonance in the spectrum is labeled with assigned amino acid residues.

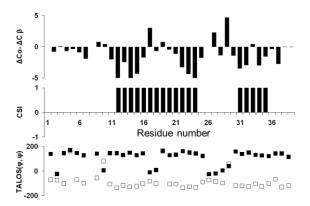



Figure 3. Secondary structure prediction of WW2 domain. Delta values ( $\delta C\alpha - \delta C\beta$ ) of backbone carbon to random coil chemical shift were plotted. In the CSI, the values '1' represents the  $\beta\text{-strand}$  tendency. Backbone dihedral angles were calculated using TALOS+ server.

implied that there would be a short linker between the first and second β-strands. This is also supported by <sup>1</sup>H-<sup>15</sup>N heteronuclear NOE results (Figure 4A). Taken together, WW2 has three β-strands, and the β-strands correspond to residues 11-16 (β1), 21-24  $(\beta 2)$ , and 31-32  $(\beta 3)$  (Figure 3).

Backbone dynamics of WW2 domain - To characterize the backbone dynamics of WW2 domain, <sup>1</sup>H-<sup>15</sup>N heteronuclear NOE and amide hydrogen

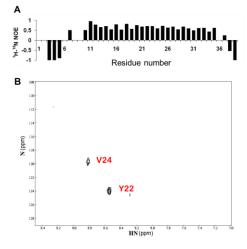



Figure 4. Backbone flexibility of the WW2 domain. (A) <sup>1</sup>H-<sup>15</sup>N heteronuclear NOE values were plotted as a function of residue number. (B) Hydrogen/deuterium exchange experiment of WW2 domain. The detected residues were marked with red color.

exchange experiments were performed. In the result of H/D exchange experiment, only two peaks (Y22 and V24) in the second  $\beta$ -strand appeared in the  $^1\text{H-}^{15}\text{N}$  HSQC spectrum of WW2 in 100% D<sub>2</sub>O, which clearly show that overall regions of WW2 domain were exposed to solvent water (Figure 4B). Although WW2 domain may have hydrogen bonds between  $\beta$ -strands, the residues forming hydrogen bonds were exposed and replaced by the deuterium immediately. Because of the low molecular weight of WW2 domain, hydrogen bonding networks could not be protected, and this result is in accordance with the heteronuclear NOE data (Figure 4A)

**Table 1.** Chemical shifts (ppm) of  $^1H^N$ ,  $^{15}N$ ,  $^{13}C\alpha$ ,  $^{13}C\beta$  and  $^{13}CO$  of WW2 domain

| a.a. | $^{1}H^{N}$ | <sup>15</sup> N | <sup>13</sup> Cα | <sup>13</sup> Cβ | <sup>13</sup> CO |
|------|-------------|-----------------|------------------|------------------|------------------|
| G1   |             |                 |                  |                  |                  |
| R2   |             |                 | 56.384           | 31.372           |                  |
| A3   | 8.521       | 126.101         | 52.734           | 19.32            |                  |
| M4   | 8.41        | 120.258         | 55.545           | 33.516           |                  |
| G5   | 8.32        | 110.534         | 44.746           |                  |                  |
| P6   |             |                 | 63.053           | 32.546           | 173.906          |
| L7   | 8.415       | 121.991         | 52.934           | 42.037           | 171.461          |
| P8   |             |                 |                  |                  |                  |
| P9   |             |                 | 64.273           | 32.111           | 174.218          |
| G10  | 8.706       | 111.463         | 45.55            |                  | 170.589          |
| W11  | 7.55        | 119.019         | 57.319           | 31.941           | 173.658          |
| E12  | 9.292       | 121.341         | 54.997           | 34.568           | 171.161          |
| R13  | 8.765       | 125.81          | 55.708           | 32.339           | 172.03           |
| R14  | 8.808       | 128.174         | 54.186           | 34.157           | 169.701          |
| V15  | 7.806       | 116.717         | 60.528           | 34.625           | 174.261          |
| D16  | 9.248       | 127.499         | 52.979           | 41.496           | 174.918          |
| N17  | 8.531       | 115.284         | 55.59            | 37.639           | 173.102          |
| M18  | 8.457       | 118.959         | 54.703           | 32.675           | 173.704          |

| G19 | 8.157 | 109.016 | 45.901 |        | 171.294 |
|-----|-------|---------|--------|--------|---------|
| R20 | 8.746 | 122.945 | 56.372 | 31.025 | 172.574 |
| I21 | 8.395 | 124.715 | 60.935 | 38.751 | 172.633 |
| Y22 | 8.742 | 124.42  | 55.59  | 39.573 | 167.868 |
| Y23 | 8.823 | 116.271 | 56.638 | 41.667 | 171.968 |
| V24 | 9.001 | 120.136 | 60.025 | 35.712 | 170.782 |
| D25 | 8.099 | 126.198 | 51.78  | 40.322 | 174.663 |
| H26 | 8.79  | 123.436 | 58.425 | 29.454 | 172.982 |
| F27 | 8.326 | 117.869 | 59.714 | 38.419 | 174.406 |
| T28 | 7.344 | 107.484 | 62.252 | 70.734 | 171.972 |
| R29 | 8.012 | 118.094 | 57.55  | 27.056 | 172.698 |
| T30 | 7.507 | 113.707 | 62.498 | 71.024 | 170.281 |
| T31 | 8.334 | 116.589 | 60.936 | 71.524 | 171.06  |
| T32 | 9.166 | 117.656 | 60.195 | 70.244 | 169.315 |
| W33 | 8.452 | 124.528 | 58.251 | 30.392 | 173.216 |
| N34 | 8.231 | 120.929 | 54.999 | 30.295 | 171.223 |
| R35 | 8.395 | 126.962 | 54.589 | 30.372 | 171.212 |
| P36 |       |         | 62.686 | 31.648 | 172.598 |
| T37 | 7.875 | 112.934 | 60.968 | 70.818 | 170.892 |
| L38 | 8.341 | 124.416 | 55.544 | 42.791 | 173.198 |
| E39 | 7.935 | 126.591 | 58.136 | 31.423 | 177.882 |

### Conclusion

In this study, backbone resonance assignments of WW2 domain from hAIP4 are completed, and the secondary structure and backbone dynamics of WW2 domain are determined. The present results provide not only fundamental structural information of WW2 domain at the atomic level but also structural basis for the interaction study of WW2 domain with various binding proteins.

# Acknowledgements

This study made use of the NMR machine at the College of pharmacy, Seoul National University. This work

was supported by grants provided by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (2019R1F1A1060683).

#### References

- 1. J. Huibregtse, M. Scheffner, S. Beaudenon, and P. Howley, Proc. Nati. Acad. Sci. 92, 2563 (1995)
- 2. R. J. Ingham, G. Gish, and T. Pawson, Oncogene 23, 1972 (2004)
- 3. K. F. Harvey and S. Kumar, *Trends in Cell Biology* **9**, 166 (1999)
- 4. H. I. Chen, A. Einbond, S. J. Kwak, H. Linn, E. Koepf, S. Peterson, J. W. Kelly, and M. Sudol, J. Biol. Chem. 272, 17070 (1997)
- 5. J. L. Ilsley, M. Sudol, S. and J. Winder, *Cell. Signal.* **14**, 183 (2002)
- 6. M. Sudo, Prog. Biophys. Mol. Biol. 65, 113 (1996)
- 7. M. J. Macias, M. Hyvonen, E. Baraldi, J. Schultz, M. Sudol, M. Saraste, and H. Oschkinat, Nature 382, 646 (1996)
- 8. M. T. Bedford, D. Sarbassova, J. Xu, P. Leder, and M. B. Yaffe, J. Biol. Chem. 275, 10359 (2000)
- 9. X. Espanel and M. Sudol, J. Biol. Chem. 274, 17284 (1999)
- 10. M. Sudol and T. Hunter, Cell 103, 1001 (2000)
- 11. M. J. Macias, V. Gervais, C. Civera, and H. Oschkinat, Nat. Struct. Biol. 7, 375 (2000)
- 12. N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, J. D. Forman-Kay, and L. E. Kay, *Biochemistry* **33**, 5984 (1994)
- 13. Y. H. Jeon, T. Yamazaki, T. Otomo, A. Ishihama, and Y. Kyogoku, J. Mol. Biol. 267, 953 (1997)
- 14. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
- 15. B. A. Johnson and R. A. Blevins, *J. Biomol. NMR.* **4**, 603 (1994)
- 16. W. J. Metzler, K. L. Constantine, M. S. Friedrichs, A. J. Bell, E. G. Ernst, T. B. Lavoie, and L. Muller, Biochemistry 32, 6201 (1993)
- 17. D. S. Wishart and B. D. Sykes, *J. Biomol. NMR* **4**, 171 (1994)
- 18. G. Cornilescu, F. Dealglio, and A. Bax, *J. Biomol. NMR* 13, 289 (1999)