DOI QR코드

DOI QR Code

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT

MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환

  • Song, Seungbeen (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Park, Eunji (Department of Applied Physics, University of Hanyang ERICA) ;
  • Park, Jong Sun (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Oh, Yejin (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Jeong, Hoon (Manufacturing System R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Ji Won (Department of Photonics and Nanoelectronics, University of Hanyang ERICA)
  • 송승빈 (한양대학교 ERICA 나노광전자학과) ;
  • 박은지 (한양대학교 ERICA 응용물리학과) ;
  • 박종선 (한양대학교 ERICA 나노광전자학과) ;
  • 오예진 (한양대학교 ERICA 나노광전자학과) ;
  • 정훈 (한국생산기술연구원 청정생산시스템연구소) ;
  • 김지원 (한양대학교 ERICA 나노광전자학과)
  • Received : 2020.03.23
  • Accepted : 2020.04.22
  • Published : 2020.06.25

Abstract

In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.

본 연구에서는 Yb 광섬유 레이저 MOPA (master oscillator power amplifier) 시스템을 구축하여 고출력, 고효율의 근적외선 레이저 빔을 발진시키고, 이를 주기분극반전 준위상정합 비선형 광학 소자인 MgO:PPSLT에 단일 통과시키는 방식을 통하여 고출력 고효율 연속발진 녹색 레이저 빔을 생성하는 방법을 보고한다. 자발 펄싱을 억제할 수 있는 패브리-패롯 피드백 공진기 구조를 사용한 광섬유 레이저 주공진기를 사용하여 선폭이 좁고 선형 편광된 1064 nm 레이저 씨앗 빔을 안정적으로 생성할 수 있었으며, 이를 Yb 광섬유 증폭단에서 고출력으로 증폭시켰다. 증폭된 레이저 빔을 MgO:PPSLT에 통과시켜 고출력 고효율의 이차조화파를 얻을 수 있었는데, 이때 얻은 532 nm 레이저의 최고 출력은 기본 입사광의 출력이 25.0 W일 때 11.1 W였으며, 변환 효율은 44.4%를 얻었다.

Keywords

References

  1. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett. 25, 105-107 (2000). https://doi.org/10.1364/OL.25.000105
  2. S. M. Cristescu, S. T. Persijn, S. T. L. Hekkert, and F. J. M. Harren, "Laser-based systems for trace gas detection in life sciences," Appl. Phys. B 92, 343-349 (2008). https://doi.org/10.1007/s00340-008-3127-y
  3. G. K. Samanta, S. C. Kumar, R. Das, and M. Ebrahim-Zadeh, "Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm," Opt. Lett. 34, 2255-2257 (2009). https://doi.org/10.1364/OL.34.002255
  4. A. Nakamura, H. Okuda, T. Nagaoka, N. Akiba, K. Kurosawa, K. Kuroki, F. Ichikawa A. Torao, and T. Sota, "Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls," Forensic Sci. Int. 254, 100-105 (2015). https://doi.org/10.1016/j.forsciint.2015.06.031
  5. A. A. S. Marouf and M. A. D. A. Daood, "Detection of fingerprint using He-Ne and diode lasers on aluminium and glass surfaces," Radiation Sci. Technol. 5, 37-40 (2019). https://doi.org/10.11648/j.rst.20190504.11
  6. N. Saitoh and N. Akiba, "Ultraviolet fluorescence spectra of fingerprints," Sci. World J. 5. 355-366 (2005). https://doi.org/10.1100/tsw.2005.43
  7. P. Metz, S. Muller, F. Reichert, D.-T. Marzahl, F. Moglia, C. Krankel, and G. Huber, "Wide wavelength tunability and green laser operation of diode-pumped $Pr^{3+}:KY_3F_{10}$," Opt. Express 21, 31274-31281 (2013). https://doi.org/10.1364/OE.21.031274
  8. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, "Diode pumping of a continuous-wave $Pr^{3+}$-doped $LiYF_4$ laser," Opt. Lett. 29, 2638-2640 (2004). https://doi.org/10.1364/OL.29.002638
  9. M. Fibrich, H. Jelinkova, J. Sulc, K. Nejezchleb, and V. Skoda, "Visible cw laser emission of GaN-diode pumped Pr:$YAlO_3$ crystal," Appl. Phys. B 97, 363 (2009). https://doi.org/10.1007/s00340-009-3679-5
  10. F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, "Efficient laser operation of $Pr^{3+}$, $Mg^{2+}:SrAl_{12}O_{19}$," Opt. Lett. 37, 4889-4891 (2012). https://doi.org/10.1364/OL.37.004889
  11. J. Nakanishi, Y. Horiuchi, T. Yamada, O. Ishii, M. Yamazaki, M. Yoshida, and Y. Fujimoto, "High-power direct green laser oscillation of 598 mW in $Pr^{3+}$-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes," Opt. Lett. 36, 1836-1838 (2011). https://doi.org/10.1364/OL.36.001836
  12. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997). https://doi.org/10.1364/OL.22.001834
  13. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett. 25, 105-107 (2000). https://doi.org/10.1364/OL.25.000105
  14. Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, "103 W high beam quality green laser with an extra-cavity second harmonic generation," Opt. Express 16, 14335-14340 (2008). https://doi.org/10.1364/OE.16.014335
  15. K. Yamamoto, H. Furuya, and K. Mizuuchi, "Highly-efficient SHG laser by using periodically poled MgO:$LiNbO_3$ and its application," in Proc. IEEE Lasers and Electro-Optics Society Annual Meeting Conference (Lake Buena Vista, FL, USA, Oct. 2007), pp. 693-694.
  16. S. V. Tovstonoga, S. Kurimura, and K. Kitamura, "High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate," Appl. Phys. Lett. 90, 051115 (2007). https://doi.org/10.1063/1.2450648
  17. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L 1265 (2004). https://doi.org/10.1143/JJAP.43.L1265
  18. M. Stappel, D. Kolbe, and J. Walz, "Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal," Opt. Lett. 39, 2951-2954 (2014). https://doi.org/10.1364/OL.39.002951
  19. S. Sinha, D. S. Hum, K. E. Urbanek, Y.-W. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008). https://doi.org/10.1109/JLT.2008.928396
  20. K. Kitamura and Y. Furukawa, "Crystal growth and low coercive field $180^{\circ}$ domain switching characteristics of stoichiometric $LiTaO_3$," Appl. Phys. Lett. 73, 3073-3075 (1998). https://doi.org/10.1063/1.122676
  21. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, "QPM wavelength converters based on stoichiometric lithium tantalate," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB18
  22. G. K. Samanta, S. C. Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009). https://doi.org/10.1364/OL.34.001561
  23. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, "Near-stoichiometric $LiTaO_3$ for bulk quasi-phase-matched devices," Ferroelectrics 273, 199-204 (2002). https://doi.org/10.1080/00150190211790
  24. T. Tekin, H. Schroder, B. Wunderle, G. Erbert, A. Klehr, O. Brox, J. Wiedmann, and F. Scholz, "A compact integrated green-light source by second harmonic generation of a GaAs distributed feedback laser diode," Proc. SPIE 6992, 69920O (2008).
  25. J. Wiedmann, F. Scholz, T. Tekin, S. Marx, G. Lang, H. Schroder, O. Brox, and G. Erbert, "Green light source by single-pass second harmonic generation with laser and crystal in a tilted butt joint setup," Proc. SPIE 7212, 72120B (2009).
  26. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, "83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber," IEEE Photon. Technol. Lett. 16, 1825-1827 (2004). https://doi.org/10.1109/LPT.2004.830520
  27. J. Lee, H. Jeong, and J. W. Kim, "Self-pulsing-free continuous-wave operation of an all-fiberized Yb fiber laser," Jpn. J. Appl. Phys. 54, 072701 (2015). https://doi.org/10.7567/JJAP.54.072701
  28. J. S Lee and J. W. Kim, "Suppression of self-pulsing in Yb fibre lasers coupled with external Fabry-Perot cavity," Electron. Lett. 50, 695-697 (2014). https://doi.org/10.1049/el.2014.0530
  29. A. Liu, M. A. Norsen, and R. D. Mead, "60-W green output by frequency doubling of a polarized Yb-doped fiber laser," Opt. Lett. 30, 67-69 (2005). https://doi.org/10.1364/OL.30.000067
  30. P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, "All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W," Laser Phys. Lett. 6, 384 (2009). https://doi.org/10.1002/lapl.200910009
  31. OXIDE Co., "Custom PPMgSLT," (OXIDE Co.), https://www.opt-oxide.com/products/customized-ppmgslt (accessed Mar. 15, 2020).
  32. S. C. Kumar, G. K. Samanta and M. Ebrahim-Zadeh, "High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT," Opt. Express 17, 13711-13726 (2009). https://doi.org/10.1364/OE.17.013711
  33. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966). https://doi.org/10.1364/AO.5.001550
  34. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Opt. 39, 3597-3639 (1968).
  35. W. P. Risk, T. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers, 1st ed. (Cambridge University Press, NY, US, 2003), Chapter 2, pp. 30-40.