DOI QR코드

DOI QR Code

Main constituents and bioactivities of different parts of aronia (Aronia melanocarpa)

아로니아 부위별 주요 성분 정량 및 생리활성 평가

  • 김성웅 (베리&바이오식품연구소) ;
  • 채규서 (베리&바이오식품연구소) ;
  • 이수정 (베리&바이오식품연구소) ;
  • 김기덕 (고창군청 농어촌식품과) ;
  • 문제학 (전남대학교 농업생명과학대학 식품공학과) ;
  • 권지웅 (베리&바이오식품연구소)
  • Received : 2020.02.13
  • Accepted : 2020.04.09
  • Published : 2020.06.30

Abstract

This study was designed to evaluate the biological activities and main constituents of different parts (fruit, leaf, and stem) of aronia (Aronia melanocarpa). The total phenolic and flavonoidcontents, DPPH and ABTS+ radical-scavenging activity, reducing power, and ferric reducing/antioxidant power were observed to follow the order of: leaves > stems > fruits, regardless of extraction solvents. The inhibitory activity against lipopolysaccharide-induced NO production in Raw 264.7 cells was significantly higher in the aronialeaf extract-treated group than in the groups treated with stem and fruit extracts. The ultra-performance liquid chromatography (UPLC) analysis was mainly composed of routine. In addition, the highest content level was measured in the case of the catechinmemberepigallocatechin witha higher value than that found in green tea. Theresults of this studyprovide useful information for understanding the chemical constituents and biological activities of aroniafruits and byproducts.

본 연구에서는 아로니아 재배 시 발생하는 주요 부산물, 즉 잎과 줄기의 활용성을 높여 농가 소득증진에 기여하고자 부산물의 성분학적기능학적 우수성을 평가하기 위해 아로니아 열매, 잎, 줄기의 물 및 에탄올 농도별 추출물을 제조하여 주요 성분 함량 분석 및 생리활성 평가를 진행하였다. 아로니아 부위별 에탄올 추출물의 총 페놀성 화합물 및 총 플라보노이드의 함량을 분석한 결과 잎과 줄기가 열매보다 월등히 높은 총 폴리페놀 및 총 플라보노이드 함량을 보였다. 추출 용매에 따른 비교 결과에서는 열매의 경우 50% 에탄올 추출물, 잎의 경우 30% 에탄올 추출물, 줄기는 70% 에탄올 추출물이 가장 높은 총 폴리페놀 및 총 플라보노이드 함량을 나타내어, 부위에 따라 최적 추출 용매 조건에 차이가 있음을 확인하였다. 페놀성 화합물 9종을 분석한 결과 모든 시료에서 rutin이 가장 높은 함량의 화합물로 분석되었고, p-Coumaric acid, ferulic acid, quercetin, caffeic acid, galli acid, resveratrol은 모든 추출물에서 검출되었다. 또한, 아로니아 열매, 잎, 줄기의 물 및 에탄올 농도별 추출물의 caffeine 및 catechins 분석 결과 caffeine 및 catechin, epicatechin, epigalloactechin, epicatechingallate, epigallocatechingallate가 모두 검출되었는데, epicatechin은 열매에서만 검출되었고, epigalloactechin은 열매의 물 추출물에서만 검출되지 않았으며, catechin의 경우 줄기에서 열매 및 잎보다 약 9배 이상 높게 검출되었다. 산화방지 활성 측정을 위해 DPPH 및 ABTS+ 라디칼 소거능의 IC50 값을 측정한 결과 총 폴리페놀 함량이 높았던 잎>줄기>열매 순으로 높은 소거활성을 보였고, 환원력 및 FRAP를 측정한 결과에서도 잎>줄기>열매 순으로 높은 활성을 나타내었다. 또한, 추출 용매에 따른 산화 방지 활성을 비교한 결과 열매의 경우 50% 에탄올 추출물이 가장 높은 활성을 보였고, 잎은 30% 에탄올 추출물, 줄기는 50% 에탄올 추출물이 가장 높은 활성을 보여, 부위별로 추출 용매에 따른 산화 방지 활성의 차이가 큰 것을 확인하였다. 산화스트레스에 대한 세포 생존율을 비교한 결과 열매와 줄기의 모든 추출물은 높은 세포 생존율을 보였고, 잎의 경우 30% 에탄올 추출을 제외한 모든 추출물은 높은 세포 생존율을 보였다. 세포내에서 항염증 효과를 확인한 결과 추출 용매의 종류에 관계없이 열매와 줄기 추출물에서는 염증 억제 효과가 없거나 미미하였으며, 잎 추출물에서는 염증의 생성이 현저히 감소됨이 확인되었다. 특히 30 및 50% 에탄올 추출물의 억제 효능이 뛰어난 것을 확인하였다. 결과적으로 아로니아 부산물로 버려지는 잎과 줄기 모두 항산화 활성이 우수한 것으로 나타났고, 특히 잎의 경우 산화 방지 활성 및 항염증 효과가 뛰어난 것으로 나타나 건강기능식품 및 의약품과 같은 산업적으로 이용 가치가 높을 것으로 판단된다.

Keywords

References

  1. Arts MJTJ, Haenen GRMM, Voss HP, Bast A. Antioxidant capacity of reaction products limits the applicability of the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 42: 45-49 (2004) https://doi.org/10.1016/j.fct.2003.08.004
  2. Barry Halliwell, John M. C. Gutteridge. Free radicals in biology and medicine. Oxford University Press. Oxford, England. 246-350 (2003)
  3. Bijak M, Saluk J, Antosik A, Ponczek M B, bikowska H M, Borowiecka M, Nowak P. Aronia melanocarpa as a protector against nitration of fibrinogen. International J. Biological Macromolecules. 55: 264-268 (2013) https://doi.org/10.1016/j.ijbiomac.2013.01.019
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  5. Cha JY, Jeong JJ, Kim YT, Seo WS, Yang HJ, Kim JS, Lee YS Detection of chemical characteristics in Hamcho (Salicornia herbacea L.) according to harvest periods. J. Life Sci., 16: 683-690 (2006) https://doi.org/10.5352/JLS.2006.16.4.683
  6. Chang HJ, Choi EH, Chun HS. Quantitative Structure-Acitivity Relationship (QSAR) of antioxidative anthocyanidins and their glycosides. Food Sci. Bio. technol. 17: 501-507 (2008)
  7. Chang CC, Yang MH, Chen JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178-182 (2002)
  8. Choi JM, Kim KY, Lee SH, Ahn JB. Functional Properties of Water Extracts from Different Parts of Acanthopanax sessiliflorus. Food Eng. Prog. 15: 130-135 (2011)
  9. Choi SW, Lee YJ, Ha SB, Jeon YH, Lee DH. Evaluation of Biological Activity and Analysis of Functional Constituents from Different Parts of Mulberry (Morus alba L.) Tree. J. Korean Soc. Food Sci. Nutr. 44: 823-831 (2015) https://doi.org/10.3746/jkfn.2015.44.6.823
  10. Choi HS, Lee BY, Lee OH. Antioxidant and anti-adipogenic effects of ethanolic extracts from tartary and common buckwheats. Korean J. Food Preserv. 19: 123-130 (2012) https://doi.org/10.11002/kjfp.2012.19.1.123
  11. Choi SY, Lim SH, Kim JS, Ha TY, Kim SR, Kang KS, Hwang IK. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Korean J. Food Sci. Technol. 37 549-55 (2005)
  12. Choi, JS, Park JH, Kim HG, Young HS, Mun SI. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus daviana. Korean J. Pharmacol. 24: 299-303 (1993)
  13. Damnjanovic I, Kitic D, Stefanovic N, Zlatkovic-Guberinic S, Catic-Djordjevic A, Velickovic-Radanovic R. Herbal selfmedication use in patients withdiabetes mellitus type 2. Turkish J. Medical Sci. 45: 964-971 (2015) https://doi.org/10.3906/sag-1410-60
  14. Gasiorowski K, Szyba K, Brokos B, Kolaczynska B, Jankowiak-Wlodarczyk M, Oszmiaski J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 119: 37-46 (1997) https://doi.org/10.1016/S0304-3835(97)00248-6
  15. Ham HJ, Kim SM, Pyo BS, Lee KI. Antioxidant compounds and activities of methanolic extracts from oat cultivars. J. Korean Soc. Food Sci. Nutr. 44: 1660-1665 (2015) https://doi.org/10.3746/jkfn.2015.44.11.1660
  16. Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters(Lett). 414: 552-556 (1997) https://doi.org/10.1016/S0014-5793(97)01068-5
  17. Hwang SJ, Yoon WB, Lee OH, Cha SJ, Kim JD. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem. 146: 71-78 (2014) https://doi.org/10.1016/j.foodchem.2013.09.035
  18. Kang HW. Antioxidant and Anti-inflammatory Effect of Extracts from Flammulina velutipes (Curtis) Singer. J. Korean. Soc. Food Sci. Nutr. 41(8): 1072-1078 (2012) https://doi.org/10.3746/jkfn.2012.41.8.1072
  19. Kang MH, Choi CS, Kim ZS, Chung HK. Antioxidative activities of ethanol extract prepared from leaves, seed, branch and aerial part of Crotalaria sessiflora L.. Korean J. Food Sci. Technol. 34: 1098-1102 (2002)
  20. Kdzierska M, Glowacki R, Czernek U Katarzyna, S P, Potemski, P Piekarski J, Jeziorski A, Olas B. Changes in plasma thiol levels induced by different phases of treatment in breast cancer; The role of commercial extract from black chokeberry. Mol. Cell. Biochem. 372: 47-55 (2013) https://doi.org/10.1007/s11010-012-1444-2
  21. KFDA. Korea health supplements food standard codex. Korea Food and Drug Administration, Seoul, Korea. pp. 529 (2012)
  22. Kim SH, Han DS, Park JD. Changes of some chemical compounds of Korean (Posong) green tea according to harvest periods. Korean J. food Sci. Technol. 36: 542-546 (2004)
  23. Kim NY, Kim JH, Choi GP, Lee HY. Comparison of anti-skin wrinkle activities of Aronia melanocarpa extracts by extraction methods. Korean J. Medicinal Crop. Science. 22: 217-222 (2014) https://doi.org/10.7783/KJMCS.2014.22.3.217
  24. Kim KA, Kwon JW, Kim YS, Park PJ, Chae KS. Antioxidant activities of ethanol extracts from different parts of the Black Raspberry (Rubus occidentalis) obtained using ultra-sonication. Korean J. Food Sci. Technol. 47: 504-510 (2015) https://doi.org/10.9721/KJFST.2015.47.4.504
  25. Kwon TH, Kim JK, Kim TW, Lee JW, Kim JT, Seo HJ, Kim MJ, Kim CG, Jeon DS, Park NH. Antioxidant and Anti-lipase Activity in Halocynthia roretzi Extracts. Korean J. Food Sci. Technol. 43: 464-468 (2011) https://doi.org/10.9721/KJFST.2011.43.4.464
  26. Kwon JW, Lee HK, Park HJ, Kwon TO, Choi HR, Song JY. Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. Korean J. Medicinal Crop. Sci. 19: 325-333 (2011) https://doi.org/10.7783/KJMCS.2011.19.5.325
  27. Lee JH, Jhoo JW. Antioxidant activity of different parts of lespedeza bicolor and isolation of antioxidant compound. Korean J. Food Sci. Technol. 44: 763-771 (2012) https://doi.org/10.9721/KJFST.2012.44.6.763
  28. Lee SH, Kim KN, Cha SH, Ahn GN, Jeon YJ. Comparison of antioxidant activities of enzymatic and methanolic extracts from Ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr. 35: 1139-1145 (2006) https://doi.org/10.3746/jkfn.2006.35.9.1139
  29. Moon GS, Ryu BM, Lee MJ. Components and antioxidative activities of buchu (Chinese chives) harvested at different times. Korean J. Food Sci. Technol. 35: 493-498 (2003)
  30. Niki E, Shimaski H, Mino M. Antioxidantism-free radical and biological defence. Gakkai Syuppan Center. Tokyo, Japan. pp. 3-16 (1994)
  31. Oszmiaski J, Wojdylo A. Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technol. 221: 809-813 (2005) https://doi.org/10.1007/s00217-005-0002-5
  32. Oyaizu M. Studies on products of browning reaction-antioxidant activities of products of browning reaction prepared from glucosamine. Japan J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  33. Park HJ, Han ES, Park DK, Lee C, Lee KW. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity. J. Med. Food 13(6): 1468-1545 (2010) https://doi.org/10.1089/jmf.2010.1131
  34. Park SH, Han JH. Development of drink from composition with medicinal plants and evaluation of its physiological function. Korean J. Nutr. 37: 364-372 (2004)
  35. Park HM, Hong JH. Physiological activities of Aronia melanocarpa extracts on extraction solvents. Korean J. Food Preserv. 21: 718-826 (2014) https://doi.org/10.11002/kjfp.2014.21.5.718
  36. Sloan AE. The top 10 functional foods. J. Food Technology. 20: 22-40 (2006)
  37. Song HJ, Lee SR. Anti-oxidant and Inhibitory Activity on NO Production of Extract and its Fractions from Rosa davurica Pall. Leaves. Korean J. Medicinal Crop Sci. 23(1) : 2026 (2015)
  38. Tanaka T, Tanaka A. Chemical components and characteristics of black chokeberry. J. Jpn. Soc. Food Sci. Technol. 48: 606-610 (2001) https://doi.org/10.3136/nskkk.48.606
  39. Yang H, Oh KH, Yoo YC. Anti-inflammatory effect of hot water extract of aronia fruits in LPS-stimulated RAW 264.7 macrophages. J. Korean Soc. Food Sci. Nutr. 44: 7-13 (2015) https://doi.org/10.3746/jkfn.2015.44.1.007
  40. Yoon SJ, Cho NJ, Na SH, Kim YH, Kim YM. Development of optimum rutin extraction process from Fagopyrum tataricum. J. East Asian Soc. Diet. Life. 16: 573-577 (2006)
  41. Yoshida Y, Kiso M, Goto T. Efficiency of the extraction of catechins from green tea. Food Chem. 67: 429-433 (1999) https://doi.org/10.1016/S0308-8146(99)00148-X
  42. Zapolska-Downar D, Bryk D, Malecki M, Hajdukiewicz K, Sitkiewicz D. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. Z Ernahrungswiss Suppl. 51: 563-572 (2012)
  43. Zhang ZL, Zhou ML, Tang Y, Li FL, Tang YX, Shao JR, Xue WT, Wu YM. Bioactive compounds in functional buckwheat food. Food Res. Int. 49: 389-395 (2012) https://doi.org/10.1016/j.foodres.2012.07.035