DOI QR코드

DOI QR Code

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity

국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과

  • Han, Hye Ju (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Min Ji (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • An, Jun Woo (Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Se Jin (Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 한혜주 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 김민지 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 안준우 (경상대학교 농업생명과학대학 식품공학과) ;
  • 이세진 (경상대학교 농업생명과학대학 식품공학과) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 김종민 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원)
  • Received : 2020.04.10
  • Accepted : 2020.05.19
  • Published : 2020.06.30

Abstract

This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

본 연구에서는 국내 주요 토종 향신료로 활용되는 초피(Zanthoxylum piperitum)와 산초(Zanthoxylum schinifolium)가 갖는 in vitro 항당뇨 활성과 뇌신경세포 보호 효과를 확인하고 이에 영향을 주는 주요 생리활성물질을 분석하고자 하였다. 추출 용매에 따른 차이를 비교하기 위하여 총 페놀함량을 측정한 결과, 공통적으로 40% 에탄올의 초피 추출물(EZP)과 산초 추출물(EZS)에서 뛰어난 함량을 나타냈으며, ABTS/DPPH 라디칼 소거 활성과 MDA 생성 억제 효과에 대해서도 상대적으로 우수한 항산화 활성을 보였다. 초피 추출물(EZP)와 산초 추출물(EZS)의 당뇨 관련 효소에 대한 저해 효과를 비교한 결과, 초피 추출물(EZP)는 α-amylase 및 α-glucosidase와 같은 효소를 직접적으로 억제하는 능력이 뛰어났으며, 산초 추출물(EZS)는 비효소적 반응으로 단백질과 당의 결합을 막아 최종당화산물의 생성을 억제하는 능력이 뛰어난 것으로 나타났다. 또한, MC-IXC 뇌신경세포에 고당을 처리하여 산화적 스트레스를 유발시켰을 때 생성되는 ROS의 함량과 뇌신경세포 사멸에 대해 우수한 보호 효과를 보여주었다. 이러한 초피 추출물(EZP)와 산초 추출물(EZS)의 생리활성물질을 확인하기 위해 UPLC IMS-QTOF/MSE 분석을 실시한 결과, 초피 추출물(EZP)의 경우 3-CQA, 4-CQA, quercetin-3-O-glucoside 및 quercetin-3-O-rhamnoside가 주요 물질임을 확인하였으며, 산초 추출물(EZS)의 경우 protocatechuic acid glucoside, 5-CQA 및 rutin이 주요 물질임을 확인하였다. 이상의 결과로부터 초피와 산초는 식후 혈당의 급격한 상승을 지연 또는 개선하고 이로 인해 야기되는 산화적 스트레스로부터 뇌신경세포를 보호하여 고혈당으로 인한 퇴행성 뇌질환과 같은 당뇨 및 그 합병증을 예방할 수 있는 천연 유래 건강기능식품 소재로의 산업적 활용 가능성을 확인하였다.

Keywords

References

  1. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J. 24: 547-553 (2016) https://doi.org/10.1016/j.jsps.2015.03.013
  2. Bournival J, Francoeur MA, Renaud J, Martinoli MG. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuv. Res. 15: 322-333 (2012) https://doi.org/10.1089/rej.2011.1242
  3. Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, Simon F. Oxidative stress in disease and aging: mechanisms and therapies. Oxidative Med. Cell. Longev. 2016: 10.1155/2016/8786564 (2016)
  4. Dudonne S, Vitrac X, Coutiere P, Woillez M, Mrillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57: 1768-1774 (2009) https://doi.org/10.1021/jf803011r
  5. Duge de Bernonville T, Guyot S, Paulin JP, Gaucher M, Loufrani L, Henrion D, Derbre S, Guilet D, Richomme P, Dat JF, Brisset MN. Dihydrochalcones: implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71: 443-452 (2010) https://doi.org/10.1016/j.phytochem.2009.11.004
  6. Derosa G, Maffioli P. ${\alpha}$-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 8: 899-906 (2012) https://doi.org/10.5114/aoms.2012.31621
  7. Gua J, Jin YS, Han W, Shim TH, Sa JH, Wang MH. Studies for component analysis, antioxidative activity and ${\alpha}$-glucosidase inhibitory activity from Equisetum arvense. J. Korean Soc. Appl. Biol. Chem. 49: 77-81 (2006)
  8. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int. J. Endocrinol. 10.1155/2014/674987 (2014)
  9. Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433-446 (2001) https://doi.org/10.1016/S0891-5849(00)00498-6
  10. Jang MJ, Rhee SJ, Cho SH, Woo MH, Choi JH. A study on the antioxidative, anti-inflammatory and anti-thrombogenic effects of Zanthoxylum piperitum DC. extract. J. Korean Soc. Food. Sci. Nutr. 35: 21-27 (2006) https://doi.org/10.3746/jkfn.2006.35.1.021
  11. Jang HS, Rhee SJ, Woo MH, Cho SH. Anti-thrombogenic and antiinflammatory effects of solvent fractions from leaves of Zanthoxylum schinifolium (Sancho Namu) in rats fed high fat diet. Korean J. Nutr. 40: 606-615 (2007)
  12. Jeong CH, Kwak JH, Kim JH, Choi GN, Kim DO, Heo HJ. Neuronal cell protective and antioxidant effects of phenolics obtained from Zanthoxylum piperitum leaf using in vitro model system. Food Chem. 125: 417-422 (2011) https://doi.org/10.1016/j.foodchem.2010.09.022
  13. Kurita N, Koike S. Synergistic antimicrobial effect of sodium chloride and essential oil components. Agric. Biol. Chem. 46: 159-165 (1982) https://doi.org/10.1271/bbb1961.46.159
  14. Kim EJ, Choi JY, Yu MR, Kim MY, Lee SH, Lee BH. Total polyphenols, total flavonoid contents, and antioxidant activity of korean natural and medicinal plants. Korean J. Food Sci. Technol. 44: 337-342 (2012) https://doi.org/10.9721/KJFST.2012.44.3.337
  15. Kim SH, Hwang SY, Park OS, Kim MK, Chung YJ. Effect of Pinus densiflora extract on blood glucose level, OGTT and biochemical parameters in streptozotocin induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 34: 973-979 (2005) https://doi.org/10.3746/jkfn.2005.34.7.973
  16. Kim MH, Kim MC, Park JS, Kim JW, Lee JO. The antioxidative effects of the water-soluble extracts of plants used as tea materials. Korean J. Food Sci. Technol. 33: 12-18 (2001)
  17. Kandimalla R, Thirumala V, Reddy PH. Is alzheimer's disease a type 3 diabetes? a critical appraisal. Biochim. Biophys. Acta. Mol. Basis Dis. 1863: 1078-1089 (2017) https://doi.org/10.1016/j.bbadis.2016.08.018
  18. Landete JM. Dietary intake of natural antioxidants: vitamins and polyphenols. Crit. Rev. Food Sci. Nur. 53: 706-721 (2013) https://doi.org/10.1080/10408398.2011.555018
  19. Li A, Hou X, Wei Y. Fast screening of flavonoids from switchgrass and Mikania micrantha by liquid chromatography hybrid-ion trap time-of-flight mass spectrometry. Anal. Methods 10: 109-122 (2018) https://doi.org/10.1039/C7AY02103H
  20. Li W, Sun YN, Yan XT, Yang SY, Jo SH, Kwon YI, Kim YH. Rat intestinal sucrase and ${\alpha}$-glucosidase inhibitory activities of isocoumarin and flavonoids from the Zanthoxylum schinifolium stems. Bull. Korean Chem. Soc. 35: 316-318 (2014) https://doi.org/10.5012/bkcs.2014.35.1.316
  21. Liao SG, Zhang LJ, Li CB, Lan YY, Wang AM, Huang Y, Zhen L, Fu XZ, Zhou W, Qi XL, Guan ZZ, Wang YL. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Sperctrom. 24: 2355-2541 (2010)
  22. Lim SJ, Han HK, Ko JH. Effects of edible and medicinal plants intake on blood glucose, glycogen and protein levels in streptozotocin induced diabetic rats. Korean J. Nutr. 36: 981-989 (2003)
  23. Lee MS, Kang HJ, Oh HS, Paek YM, Choue RW, Park YK, Choi TI. Effects of worksite nutrition counseling for health promotion; twelve-weeks of nutrition counseling has positive effect on metabolic syndrome risk factors in male workers. Korean J. Community Nutr. 13: 46-61 (2008)
  24. Lee SG, Lee HJ, Nam TG, Eom SH, Heo HJ, Lee CY, Kim DO. Neuroprotective effect of caffeoylquinic acids from Artemisia princeps Pampanini against oxidative stress-induced toxicity in PC-12 cells. J. Food Sci. 76: C250-C256 (2011) https://doi.org/10.1111/j.1750-3841.2010.02010.x
  25. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J. Food Sci. Technol. 37: 233-240 (2005)
  26. Maritim AC, Sanders RA, Watkins Iii JB. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxic. 17: 24-38 (2003) https://doi.org/10.1002/jbt.10058
  27. Mun SI. Effects of Zanthoxylum schinifolium and its active principle on serum lipid levels in carbon tetrachloride-treated mice. Korean J. Food & Nutr. 13: 249-254 (2000)
  28. Mun SI, Ryu HS, Choi JS. Inhibition effects of Zanthoxylum schinifolium and its active principle on lipid peroxidation and liver damage in carbon tetrachloride-treated mice. J. Korean Soc. Food Sci. Nutr. 26: 943-951 (1997)
  29. Mun SI, Ryu HS, Lee HJ, Park JS. Further screening for antioxidant activity of vegetable plants and its active principles from Zanthoxylum schinifolum. J. Korean Soc. Food Sci. Nutr. 23: 466-471 (1994)
  30. Nam SM, Kang IJ, Shin MH. Anti-diabetic and anti-oxidative activities of extracts from Crataegus pinnatifida. J. East Asian Soc. Dietary Life 25: 270-277 (2015) https://doi.org/10.17495/easdl.2015.4.25.2.270
  31. Oboh G, Akinyemi AJ, Ademiluyi AO. Inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation-in vitro. Int. J. Biomed. Sci. 9: 98-106 (2013)
  32. Oh SM, Han W, Wang MH. Antioxidant and ${\alpha}$-glucosidase inhibition activity from different extracts of Zanthoxylum schnifolium fruits. Kor. J. Pharmacogn. 41: 130-135 (2010)
  33. Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors 31: 201-210 (2007) https://doi.org/10.1002/biof.5520310307
  34. Park SW, Kim DJ, Min KW, Baik SH, Choi KM, Park IB, Park JH, Son HS, Ahn CW, Oh JY, Lee JY, Chung CH, Kim JY, Kim HY. Current status of diabetes management in Korea using national health insurance database. J. Korean Diabetes Assoc. 31: 362-367 (2007) https://doi.org/10.4093/jkda.2007.31.4.362
  35. Sinan Ki, Bene K, Zengin G, Diuzheva A, Jeko J, Cziaky Z, Picot-Allain CMN, Mollica A, Rengasamy KR, Mahomoodally MF. A comparative study of the HPLC-MS profiles and biological efficiency of different solvent leaf extracts of two african plants: Bersama abyssinica and Scoparia dulcis. Int. J. Evniron. Health Res. 10.1080/09603123.2019.1652885 (2019)
  36. Song WY, Byeon SJ, Choi JH. Anti-oxidative and anti-inflammatory activities of Sasa borealis extracts. J. Agric. & Life Sci. 49: 145-154 (2015) https://doi.org/10.14397/jals.2015.49.3.145
  37. Standl E, Schnell O. Alpha-glucosidase inhibitors 2012-cardiovascular considerations and trial evaluation. Diabetes Vasc. Dis. Res. 9: 163-169 (2012) https://doi.org/10.1177/1479164112441524
  38. Verma N, Amresh G, Sahu PK, Mishra N, Rao CV, Singh AP. Pharmacological evaluation of hyperin for antihyperglycemic activity and effect on lipid profile in diabetic rats. Indian J. Exp. Biol. 51: 65-72 (2013)
  39. Vukovi NL, Vuki MD, Deli GT, Kacaniova MM, Cvijovi M. The investigation of bioactive secondary metabolites of the methanol extract of Eryngium amethystinum. Kragujev. J. Sci. 40: 113-129 (2018) https://doi.org/10.5937/kgjsci1840113v
  40. Wu C, Zhang X, Zhang X, Luan H, Sun G, Sun X, Wang X, Guo P, Xu X. The caffeoylquinic acid-rich Pandanus tectorius fruit extract increases insulin sensitivity and regulates hepatic glucose and lipid metabolism in diabetic db/db mice. J. Nutr. Biochem. 25: 412-419 (2014) https://doi.org/10.1016/j.jnutbio.2013.12.002
  41. Xue M, Shi H, Zhang J, Liu QQ, Guan J, Zhang JY, Ma Q. Stability and degradation of caffeoylquinic acids under different storage conditions studied by high-performance liquid chromatography with photo diode array detection and high-performance liquid chromatography with electrospray ionization collision-induced dissociation tandem mass spectrometry. Molecules 21: 948-960 (2016) https://doi.org/10.3390/molecules21070948
  42. Yue S, Xiao-chun L, Hong Z, Qun-li W, Ling Q, Qing S. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-${\kappa}B$ inhibition. Acta Pharmacol. Sin. 34: 1140-1148 (2013) https://doi.org/10.1038/aps.2013.59