DOI QR코드

DOI QR Code

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes

  • Received : 2020.05.14
  • Accepted : 2020.06.03
  • Published : 2020.06.30

Abstract

Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.

Keywords

References

  1. Piazzi, L., Balata, D. and Ceccherelli G. 2015. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar. Ecol. 37, 3-41. https://doi.org/10.1111/maec.12331
  2. Varisco, M., Martin, L., Zaixso, H., Velasquez, C. and Vinuesa, J. 2015. Food and habitat choice in the spider crab Leucippa pentagona (Majoidea: Epialtidae) in Bahia Bustamante, Patagonia, Argentina. Scientia Marina 79, 107-116. https://doi.org/10.3989/scimar.04060.29B
  3. Velasco-Charpentier, C., Pizarro-Mora, F., Estrades, A. and Velez-Rubio, G. M. 2016. Epibiota of juvenile Hawksbill Sea Turtles Eretmochelys imbricata stranded in the coast of Rocha Department, Uruguay. Rev. Biol. Mar. Oceanogr. 51, 449-453. https://doi.org/10.4067/S0718-19572016000200022
  4. Pavia, H., Carr, H. and Åberg, P. 1999. Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. and its epiphytic macroalgae. J. Exp. Mar. Biol. Ecol. 236, 15-32. https://doi.org/10.1016/S0022-0981(98)00191-9
  5. Karez, R., Engelbert, S. and Sommer, U. 2000. 'Coconsumption' and 'protective coating': two new proposed effects of epiphytes on their macroalgal hosts in mesograzer‐epiphyte‐host interactions. Mar. Ecol. Prog. Ser. 205, 85-93. https://doi.org/10.3354/meps205085
  6. Viejo, R. and Aberg, P. 2003. Temporal and spatial variation in the density of mobile epifauna and grazing damage on the seaweed Ascophyllum nodosum. Mar. Biol. 142, 1229-1241. https://doi.org/10.1007/s00227-002-0994-3
  7. Arrontes, J. 1990. Diet, food preference and digestive efficiency in intertidal isopods inhabiting macroalgae. J. Exp. Mar. Biol. Ecol. 139, 231-249. https://doi.org/10.1016/0022-0981(90)90149-7
  8. Hernandez, J. C., Gil-Rodriguez, M. A., Herrera-Lopez, G. and Brito, A. 2007. Diet of the "key herbivore" Diadema antillarum in two contrasting habitats in the Canary Islands (Eastern-Atlantic). Vieraea 35, 109-120.
  9. Whalen, M. A., Emmett, J. D. and Grace, J. B. 2013. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94, 510-520. https://doi.org/10.1890/12-0156.1
  10. Raghukumar, C. 1987. Fungal parasites of marine algae from Mandapam (South India). Dis. Aquat. Org. 3, 137-145. https://doi.org/10.3354/dao003137
  11. Longtin, C. M., Scrosati, R. A., Whalen, G. B. and Garbary, D. J. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J. Phycol. 45, 820-827. https://doi.org/10.1111/j.1529-8817.2009.00710.x
  12. Dworetzky, B., Klein, R. M. and Cook, P. W. 1980. Effect of growth substances on "apical dominance" in Sphacelaria furcigera (Phaeophyta). J. Phycol. 16, 239-242. https://doi.org/10.1111/j.1529-8817.1980.tb03025.x
  13. Charrier, B., Bail, A. L. and de Reviers, B. 2012. Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci. 17, 468-477. https://doi.org/10.1016/j.tplants.2012.03.003
  14. Bogaert, K. A., Arun, A., Coelho, S. M. and De Clerck, O. 2013. Brown Algae as a Model for Plant Organogenesis. In: De Smet, I. (ed), Plant Organogenesis: Methods and Protocols, Methods in Molecular Biology. Springer Science + Business Media, New York, vol. 959, pp. 97-125.
  15. Imadi, S. R., Kazi, A. G., Ahanger, M. A., Gucel, S. and Ahmad, P. 2015. Plant transcriptomics and responses to environmental stress: an overview. J. Genet. 94, 525-537. https://doi.org/10.1007/s12041-015-0545-6
  16. Hwang, B., Lee, J. H. and Bang, D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med 50, 96. https://doi.org/10.1038/s12276-018-0071-8
  17. Shulse, C. N, Cole, B.J, Ciobanu, D., Lin, J., Yoshinaga, Y., Gouran, M., Turco, G. M., Zhu, Y., O'Malley, R. C., Brady, S. M. and Dickel, D. E. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27, 2241-2247. https://doi.org/10.1016/j.celrep.2019.04.054
  18. Reddy, C. R. K., Gupta, M. K., Mantri, V. A. and Bhavanath, J. 2008. Seaweed protoplast: status, biotechnological perspectives and need. J. Appl. Phycol. 20, 619-632. https://doi.org/10.1007/s10811-007-9237-9
  19. Efroni, I. and Birnbaum, K. D. 2016. The potential of single-cell profiling in plants. Genome Biol. 17, 65. https://doi.org/10.1186/s13059-016-0931-2.
  20. Burris, K P., Dlugosz, E. M., Collins, A. G., Stewart, C. N. and Lenaghan, S. C. 2016. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep. 35, 693-704. https://doi.org/10.1007/s00299-015-1913-7
  21. Fujimura, T., Kawai, T., Kajiwara, T., Ishida, Y. 1994. Volatile components in protoplast isolated from the marine brown alga Dictyopteris prolifera (Dictyotales). Plant Tissue Cult. Lett. 11, 34-39. https://doi.org/10.5511/plantbiotechnology1984.11.34
  22. Fisher, D. D and Gibor, A. 1987. Production of protoplasts from the brown alga, Sargassum muticum (Yendo) Fensholt (Phaeophyta). Phycologia 26, 488-495. https://doi.org/10.2216/i0031-8884-26-4-488.1
  23. Chen, C. S and Shyu, J. F. 1995. Isolation of protoplast from four species of brown algae. Bot. Bull. Acad. Sinica 35, 95-104.
  24. Matsumura, W. 1998. Efficient isolation and culture of viable protoplasts from Laminaria longissima Miyabe (Phaeophyceae). Bull. Fac. Fish. Hokkaido Univ. 49, 85-90.
  25. Avila-Peltroche, J., Won, B. Y. and Cho, T. O. 2019. Protoplast isolation and regeneration from Hecatonema terminale (Ectocarpales, Phaeophyceae) using a simple mixture of commercial enzymes. J. Appl. Phycol. 31, 1873-1881. https://doi.org/10.1007/s10811-018-1660-6
  26. Ducreux, G. and Kloareg, B. 1988. Plant regeneration from protoplast of Sphacelaria (Phaeophyceae). Planta 174, 25-29. https://doi.org/10.1007/BF00394869
  27. Rusig, A-M., Le Guyader, H. and Ducreux, G. 1994. Dedifferentiation and microtubule reorganization in the apical cell protoplast of Sphacelaria (Phaeophyceae). Protoplasma 179, 83-94 https://doi.org/10.1007/BF01360739
  28. Cocking, E. C. 1972. Plant cell protoplasts - isolation and development. Annu. Rev. Plant Physiol. 23, 29-50. https://doi.org/10.1146/annurev.pp.23.060172.000333
  29. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In: Watanabe, A. and Hattori, A. (eds), Cultures and collections of algae. Proceedings of the U.S.-Japan Conference, Hakone, pp. 63-75.
  30. Keum, Y. S. 2010. Sphacelariales, Cutleriales, Ralfsiales. In: Sook, S. (ed), Algal flora of Korea. Heterokontophyta: Phaeophyceae: Ishigeales, Dictyotales, Desmarestiales, Sphacelariales, Cutleriales, Ralfisales, Laminariales, vol. 2, National Institute of Biological Resources, Incheon, pp. 19-69.
  31. Keum, Y. S., Oak, J. H., Draisma, S. G. A., Prud'homme van Reine, W. F. and Lee, I. K. 2005. Taxonomic reappraisal of Sphacelaria rigidula and S. fusca (Sphacelariales, Phaeophyceae) based on morphology and molecular data with special reference to S. didichotoma. Algae 20, 1-13. https://doi.org/10.4490/ALGAE.2005.20.1.001
  32. Bustamante, D. E., Won, B. Y. and Cho, T. O. 2016. The conspecificity of Pterosiphonia spinifera and P. arenosa (Rhodomelaceae, Ceramiales) inferred from morphological and molecular analyses. Algae 31, 105-115. https://doi.org/10.4490/algae.2016.31.5.13
  33. Destombe, C. and Douglas, S. E. 1991. Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species. Curr Genet. 19, 395-398. https://doi.org/10.1007/BF00309601
  34. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  35. Benet, H., Gall, E. Ar, Asensi, A. and Kloareg, B. 1997. Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma. 199, 39-48. https://doi.org/10.1007/BF02539804
  36. Coelho, S. M., Scornet, D., Rousvoal, S., Peters, N., Dartevelle, L., Peters, A. F. and Cock, J. M. 2012. Isolation and regeneration of protoplast from Ectocarpus. Cold Spring Harb. Protoc 2012, 361-364. doi: 10.1101/pdb.prot067959
  37. Abramoff, M. D., Magalhães, P. J. and Ram, S. J. 2004. Image processing with Image J. Biophoton Int. 11, 36-42.
  38. Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. 4th edition. Springer, NewYork. http://www.stats.ox.ac.uk/pub/MASS4.
  39. Ferrari, S. L. P. and Cribari-Neto, F. 2004. Beta regression for modelling rates and proportions. J. App. Stat. 31, 799-815. https://doi.org/10.1080/0266476042000214501
  40. Cribari-Neto, F and Zeileis, A. 2010. Beta regression in R. J. Stat. Softw. 34, 1-24.
  41. Sellke, T., Bayarri, M. J. and Berger, J. O. 2001. Calibration of p values for testing precise null hypotheses. Am. Stat. 55, 62-71. https://doi.org/10.1198/000313001300339950
  42. Lee, S. R., Oak, J. H., Keum, Y. S., Lee, J. A. and Chung, I. K. 2011. Utility of rbcS gene as a novel target DNA region for brown algal molecular systematics. Phycol. Res. 59, 34-31. https://doi.org/10.1111/j.1440-1835.2010.00596.x
  43. Bhojwani, S. S. and Razdan, M. K. 1996. Plant Tissue Culture: Theory and Practice, a Revised Edition. Elsevier, Amsterdam, p. 338.
  44. Cronshaw, J., Myers, A. and Preston, R. D. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta. 27, 89-103. https://doi.org/10.1016/0006-3002(58)90295-6
  45. Kloareg, B. and Quatrano, R. S. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26, 259-315.
  46. Salmean, A. A., Duffieux, D., Harholt, J., Qin, F., Michel, G., Czjzek, M., Willats, W. G. T and Herve, C. 2017. Insoluble ($1{\rightarrow}3$), ($1{\rightarrow}4$)-${\beta}$-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci. Rep. 7, 2880. doi:10.1038/s41598-017-03081-5.
  47. Thibault, J.F. and Rouau, X. 1990. Studies on enzymic hydrolysis of polysaccharides in sugar beet pulp. Carbohy. Polym. 13, 1-16. https://doi.org/10.1016/j.carbpol.2015.08.076
  48. Butler, D. M., Ostgaard, K., Boyen, C., Evans, L. V., Jensen, A. and Kloareg, B. 1989. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J. Exp. Bot. 40, 1237-1246 https://doi.org/10.1093/jxb/40.11.1237
  49. Kloareg, B., Polne-Fuller, M. and Gibor, A. 1989. Mass production of viable protoplasts from Macrocystis pyrifera. Plant Sci. 62, 105-112. https://doi.org/10.1016/0168-9452(89)90194-5
  50. Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H. and Du, Y. 2013. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 40, 113-122. https://doi.org/10.1007/s10295-012-1210-1
  51. Xiaoke, H., Xiaolu, J. and Huashi, G. 2003. Isolation of protoplast from Undaria pinnatifida by alginate lyase digestion. J. Ocean. Univ. Qingdao. 2, 58-61. https://doi.org/10.1007/s11802-003-0027-y
  52. Burns, A.R., Oliveira, L. and Bisalputra, T. 1984. A cytochemical study of cell wall differentiation during bud initiation in the brown alga Sphacelaria furcigera. Bot. Mar. 27, 45-54.
  53. Collen, J., Roeder, V., Rousvoal, S., Collin, O., Kloareg, B. and Boyen, C. 2006. An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J. Phycol. 42, 104-112. https://doi.org/10.1111/j.1529-8817.2006.00171.x
  54. Roeder, V., Collen, J., Rousvoal, Corre, E., Leblanc, C. and Boyen, C. 2005. Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J. Phycol. 41, 1227-1235. https://doi.org/10.1111/j.1529-8817.2005.00150.x

Cited by

  1. Protoplast isolation from Dictyopteris pacifica and Scytosiphon lomentaria, using a simple commercial enzyme preparation vol.19, pp.1, 2021, https://doi.org/10.1186/s43141-021-00226-y