DOI QR코드

DOI QR Code

A Study on the User Acceptance Model of Artificial Intelligence Music Based on UTAUT

  • Zhang, Weiwei (Dept. of Vocal Performance Music Conservatory, Anshan Normal University)
  • Received : 2020.04.24
  • Accepted : 2020.05.25
  • Published : 2020.06.30

Abstract

In this paper, the purpose is to verify the impact of performance expectations, effort expectations, social impact, individual innovation and perceived value on the intent of use and the behavior of use. Used Unified Theory of Acceptance and Use of Technology (UTAUT) to verify the applicability of this model in China, and established the research model by adding two new variables to UTAUT according to the situation of the Chinese market. To achieve this goal, 345 questionnaires were collected for experienced music creators using artificial intelligence nuggets in China by means of Internet research. The collected data were analyzed through frequency analysis, factor analysis, reliability analysis, and structural equation analysis through SPSS V. 22.0 and AMOS V 22.0. The verification of the hypotheses presented in the research model identified the decisive influence factors on the use of artificial intelligence music acceptance by Chinese users. The study is innovative in that it attempts to verify the applicability of UTAUT in the Chinese context. In the construction of the user acceptance model of AI music, three influencing factors will have an effect on users' intentions, and according to the degree of effect, from largest to smallest, they are respectively Perceived Innovativeness, Performance Expectancy and Effort Expectancy. This paper will also provide some management advices, i.e. improving the utility and usability of AI music, encouraging users with individual innovativeness, developing competitive and attractive pricing policies, increasing publicity, and prioritizing word-of-mouth advertising.

본 연구는 정보 기술 수용 모델(UTAUT)을 사용하여 이 모형은 중국 내 적용성을 검증하였으며, 중국 시장의 실태에 따라 UTAUT에 새로운 변수 2개를 추가하여 연구 모델을 설립하였다. 이와 같이 본 연구의 목적은 성과기대, 노력기대, 사회영향력, 개인혁신성, 지각된 가치가 사용의도와 사용행동에 미치는 영향을 검증하고자 한다. 이러한 목적을 달성하기 위해 인터넷 조사 방식으로 중국에 있는 인공지능음악 제품을 사용 경험 있는 음악 창작자들을 대상으로 345부의 설문지가 수집되었다. 수집된 자료는 SPSS V. 22.0와 AMOS V 22.0을 통해 빈도분석, 요인분석, 신뢰도분석, 구조방정식모형분석을 실시하여 결과를 분석하였다. 연구모델에서 제시된 가설의 검증을 통해 중국 사용자들의 인공지능 음악 수용에 대한 사용에 결정적인 영향 요인을 확인하였다. 본 연구의 결과는 UTAUT모형이 중국 배경에서의 적용성을 검증하고, 중국 배경에서의 인공지능 음악 사용자 수용 모델을 구축하였으며, 3 가지 영향 요소가 사용자의 사용 의도에 영향을 미치며, 이러한 영향요소의 역할이 영향의 크기에 따라 정렬하는 것이 효과적이다. 본 연구는 인공지능 음악의 유용성을 높이고, 인공지능 음악의 유용성을 높이며, 개인 혁신적인 사용자를 활용해 경쟁력 있고 매력적인 가격 전략을 수립하고, 입소문 홍보에 주력할 것을 관리 조언하였다.

Keywords

References

  1. L. Rincon, Starostenko, & A. S. Martín, "Algoritmic music composition based on artificial intelligence: A survey." In 2018 International Conference on Electronics, Communications and Computers, Vol, 5, pp. 187-193, Feb. 2018. DOI: 10.1109/CONIELECOMP.2018.8327197
  2. Z. Qiu, Y. Ren, C. Li, H. Liu, Y. Huang, Y. Yang, & K. Zhang, "Mind Band: a crossmedia AI music composing platform." In Proceedings of the 27th ACM International Conference on Multimedia, Vol, 3, No, 3, pp. 2231-2233, Oct. 2019. DOI: https://doi.org/10.1145/3343031.3350610
  3. D. Johnson, "Generating polyphonic music using tied parallel networks." In International conference on evolutionary and biologically inspired music and art, Vol, 4, pp. 128-143, Apr. 2017. DOI: https://doi.org/10.1007/978-3-319-55750-2_9
  4. S. Lee, "Artificial Intelligence Applications to Music Composition." The journal of the convergence on culture technology, Vol, 4, No, 4, pp. 261-266, Mar. 2018. DOI: https://doi.org/10.17703/JCCT.2018.4.4.261
  5. Q. H. Nguyen, T. T. Do, T. B. Chu, L. V. Trinh, D. H. Nguyen, C. V. Phan, & M. C. Chua, "Music Genre Classification using Residual Attention Network." In 2019 International Conference on System Science and Engineering, Vol, 9, No, 2, pp. 115-119, Jul. 2019. DOI: 10.1109/ICSSE.2019.8823100
  6. G. Zaccagnino, "Computer Music Algorithms." Bio-inspired and Artificial Intelligence Applications, Vol, 39, No, 6, pp. 52-74, Jun. 2017. DOI: http://dx.doi.org/10.14273/unisa-963
  7. Y. K. Dwivedi, N. P. Rana, A. Jeyaraj, M. Clement, & M. D. Williams, "Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model." Information Systems Frontiers, Vol, 21, No, 3, pp. 719-734, Mar. 2019. DOI: https://doi.org/10.1007/s10796-017-9774-y
  8. R. Hoque, & G. Sorwar, "Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model." International journal of medical informatics, Vol, 101, pp. 75-84, Dec. 2017. DOI: https://doi.org/10.1016/j.ijmedinf.2017.02.002
  9. J. Khalilzadeh, A. B. Ozturk, & A. Bilgihan, "Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry." Computers in Human Behavior, Vol, 70, pp. 460-474, Sep. 2017. DOI: https://doi.org/10.1016/j.chb.2017.01.001
  10. S. Rahi, M. Ghani, F. Alnaser, & A. Ngah, "Investigating the role of unified theory of acceptance and use of technology (UTAUT) in internet banking adoption context." Management Science Letters, Vol, 8, No, 3, pp. 173-186, Feb. 2018. DOI: 10.5267/j.msl.2018.1.001
  11. N. M. Suki, "Determining students' behavioural intention to use animation and storytelling applying the UTAUT model: The moderating roles of gender and experience level." The International Journal of Management Education, Vol, 15, No, 3, pp. 528-538, Feb. 2017. DOI: https://doi.org/10.1016/j.ijme.2017.10.002
  12. E. L. Slade, Y. K. Dwivedi, N. C. Piercy, & M. D. Williams, "Modeling consumers' adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust." Psychology & Marketing, Vol, 32, No, 8, pp. 860-873, Apr. 2015. DOI: https://doi.org/10.1002/mar.20823
  13. S. Rahi, & M. A. Ghani, "The role of UTAUT, DOI, perceived technology security and game elements in internet banking adoption." World Journal of Science, Technology and Sustainable Development, Vol, 15, No, 4, pp. 338-356, oct. 2018. DOI: https://doi.org/10.1108/WJSTSD-05-2018-0040
  14. P. Sarker, D. L. Hughes, & Y. K. Dwivedi, "Extension of META-UTAUT for Examining Consumer Adoption of Social Commerce: Towards a Conceptual Model." In Advances in Digital Marketing and eCommerce, Vol, 6, No, 2, pp. 122-129, May. 2020. DOI: https://doi.org/10.1007/978-3-030-47595-6_16
  15. N. Shaw, & K. Sergueeva, "The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value." International Journal of Information Management, Vol, 45, pp. 44-55, Feb. 2019. DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.024
  16. S. K. Abbas, H. A. Hassan, J. Asif, B. Ahmed, & S. S. Haider, "Integration of TTF, UTAUT, and ITM for mobile Banking Adoption. " International Journal of Advanced Engineering, Management and Science (IJAEMS), Vol, 4, No, 5, pp. 375-379, May. 2018. DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.024
  17. F. Z. Barrane, G. E. Karuranga, & D. Poulin, "Technology adoption and diffusion: a new application of the UTAUT model." International Journal of Innovation and Technology Management, Vol, 15, No, 6, pp. 195-233, Jun. 2018. DOI: https://doi.org/10.1142/S0219877019500044