DOI QR코드

DOI QR Code

Design and Implementation of 60 GHz Wi-Fi for Multi-gigabit Wireless Communications

멀티-기가비트 무선 통신을 위한 60GHz Wi-Fi 설계 및 구현

  • Yoon, Jung-Min (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jo, Ohyun (Department of Computer Science, Chungbuk National University)
  • 윤정민 (서울대학교 전기정보공학부) ;
  • 조오현 (충북대학교 소프트웨어학과)
  • Received : 2020.04.23
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

In spite of the notable advancements of millimeter wave communication technologies, the 60 GHz Wi-Fi is still not widespread yet, mainly due to the high limitation of coverage. Conventionally, it has been hardly possible to support a high data rate with fast beam adaptation while keeping atmospheric beamforming coverage. To solve these challenges in the 60 GHz communication system, holistic system designs are considered. we implemented an enhanced design LDPC decoder enabling 6.72 Gbps coded-throughput with minimal implementation loss, and our proposed phase-tracking algorithm guarantees 3.2 dB performance gain at 1 % PER in the case of 16 QAM modulation and LDPC code-rate 3/4.

밀리미터파 통신 기술의 주목할 만한 발전에도 불구하고, 60GHz Wi-Fi는 여전히 광범위한 적용 범위의 제한으로 인해 아직 널리 보급되지 않았다. 종래에는 높은 주파수에서 발생하는 신호 감쇄를 극복하기 위해 빔포밍 기술 도입이 필수적이지만 모든 방향으로의 빔 형성 범위를 유지하면서 빠른 빔 적응을 달성하기에는 어려움이 있었다. 또한 이와 동시에 멀티-기가비트의 높은 데이터 속도를 지원하는 것은 거의 불가능했다. 본 연구 에서는 60GHz 밀리미터파 통신 시스템에서 발생하는 이러한 문제를 해결하기 위한 전체적인 시스템 설계하고 구현하였다. 구현 손실을 최소화하면서 6.72 Gbps 코딩 처리량을 가능하게 하는 향상된 설계 LDPC 디코더를 소개하며, 향상된 위상 추적 알고리즘은 16 QAM 변조 및 LDPC 코드 속도 3/4의 경우 1 % 패킷 에러율에서 3.2 dB 성능 이득을 보장하여 높은 주파수의 빔포밍을 수행하는 도중에도 높은 데이터 전송율을 달성할 수 있다.

Keywords

References

  1. IEEE 802.11 Working Group. (1999). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-speed physical layer in the 5GHz band. IEEE Std 802.11.
  2. Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H. R. & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71-78. https://doi.org/10.1109/MCOM.2008.4689210
  3. Verma, L., Fakharzadeh, M. & Choi, S. (2013). Wifi on steroids: 802.11 ac and 802.11 ad. IEEE Wireless Communications, 20(6), 30-35. https://doi.org/10.1109/MWC.2013.6704471
  4. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IEEE, 34(5), 254-256.
  5. Anderson, C. R. & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE transactions on wireless communications, 3(3), 922-928. https://doi.org/10.1109/TWC.2004.826328
  6. Wu, S. H., Chiu, L. K., Lin, K. Y. & Chang, T. H. (2013). Robust hybrid beamforming with phased antenna arrays for downlink SDMA in indoor 60 GHz channels. IEEE transactions on wireless communications, 12(9), 4542-4557. https://doi.org/10.1109/TWC.2013.072313.121749
  7. Hajimiri, A., Komijani, A., Natarajan, A., Chunara, R., Guan, X. & Hashemi, H. (2004). Phased array systems in silicon. IEEE Communications Magazine, 42(8), 122-130.
  8. Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on information theory, 8(1), 21-28. https://doi.org/10.1109/TIT.1962.1057683
  9. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. & Hu, X. Y. (2005). Reduced-complexity decoding of LDPC codes. IEEE transactions on communications, 53(8), 1288-1299. https://doi.org/10.1109/TCOMM.2005.852852
  10. Mansour, M. M. & Shanbhag, N. R. (2003). High-throughput LDPC decoders. IEEE transactions on very large scale integration (VLSI) Systems, 11(6), 976-996. https://doi.org/10.1109/TVLSI.2003.817545
  11. Cui, Z., Wang, Z. & Liu, Y. (2009). High-throughput layered LDPC decoding architecture. IEEE transactions on very large scale integration (VLSI) systems, 17(4), 582-587. https://doi.org/10.1109/TVLSI.2008.2005308
  12. Huemer, M., Witschnig, H. & Hausner, J. (2003, December). Unique word based phase tracking algorithms for SC/FDE-systems. In GLOBECOM'03. IEEE Global Telecommunications Conference, 1, 70-74.
  13. Maltsev, A., Maslennikov, R., Sevastyanov, A., Lomayev, A. & Khoryaev, A. (2010, April). Statistical channel model for 60 GHz WLAN systems in conference room environment. In Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1-5).
  14. Jo, O., Hong, W., Choi, S. T., Chang, S., Kweon, C., Oh, J. & Cheun, K. (2014). Holistic design considerations for environmentally adaptive 60 GHz beamforming technology. IEEE Communications Magazine, 52(11), 30-38. https://doi.org/10.1109/MCOM.2014.6957140
  15. Jo, O., Kim, J. J., Yoon, J., Choi, D. & Hong, W. (2017). Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beamforming systems. IEEE Transactions on Antennas and Propagation, 65(12), 6646-6655. https://doi.org/10.1109/TAP.2017.2761979
  16. Jo, O., Chang, S., Kweon, C., Oh, J. & Cheun, K. (2015). 60 GHz wireless communication for future Wi-Fi. ICT Express, 1(1), 30-33. https://doi.org/10.1016/s2405-9595(15)30018-7
  17. Jo, O. & Yoon, J. (2017). Spatial reuse algorithm using interference graph in millimeter wave beamforming systems. ETRI Journal, 39(2), 255-263. https://doi.org/10.4218/etrij.17.0116.0035
  18. Ding, Y. R. & Cheng, Y. J. (2019). A Tri-band Shared-Aperture Antenna for 2.4/5.2-GHz Wi-Fi Application with MIMO Function and 60-GHz Wi-Gig Application with Beam-Scanning Function. IEEE Transactions on Antennas and Propagation.
  19. Al-Khaffaf, D. A. J. & Alsahlany, A. M. (2019). 60 GHz Millimetre wave/10 Gbps Transmission for Super Broadband Wi-Fi Network. Journal of Communications, 14(4).
  20. Fierro, L. A., Maggi, E. C., Vazquez, A. A. & Schkolnik, D. (2020). Empirical Results for Human-Induced Shadowing Events for Indoor 60 GHz Wireless Links. IEEE Access, 8, 44522-44533. https://doi.org/10.1109/access.2020.2978453
  21. Qin, X., Yuan, X., Zhang, Z., Tian, F., Hou, Y. T. & Lou, W. (2019). Joint User-AP Association and Resource Allocation in Multi-AP 60-GHz WLAN. IEEE Transactions on Vehicular Technology, 68(6), 5696-5710. https://doi.org/10.1109/tvt.2019.2908976