DOI QR코드

DOI QR Code

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet

방사선 차폐시트의 적층 구조와 섬유 코팅의 융합적인 현상이 인장강도에 미치는 영향

  • Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2020.04.06
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.

최근 의료기관에서 친환경 재료로 제작된 방사선 차폐시트를 많이 사용하고 있다. 차폐시트는 폴리머 소재에 차폐물질을 혼입하여 열성형으로 고형적인 형태로 가공된다. 베이스는 수지 계열로 인장강도에는 한계가 있으며, 이를 위해 표면에 부직포 등의 섬유를 합포하여 사용하고 있다. 차폐시트 공정 기술은 차폐성능을 높이고자 차폐물질의 함유량을 높이면 인장강도가 급격히 떨어지는 문제점을 제시하고 있다. 이를 개선하고자 본 연구에서는 차폐시트에 섬유를 Binding하는 방식과 부직포에 소량의 차폐물질인 텅스텐을 함유하여 적층구조로 Laminating방식을 기본 폴리머 형태로 Compression molding방식 세 가지 종류의 차폐시트를 제조하여 동일한 차폐 물질량을 기준으로 차폐성능과 인장 강도를 비교 평가하였다. 세 종류 차폐시트의 비교에서 섬유 코팅 시트와 압착 방식의 시트는 차폐성능 차이는 5%정도이며, 인장강도는 65MPa에서 280MPa로 큰 차이가 나타났다. 적층구조의 차폐시트는 차폐 성능도 차이가 있었으며, 인장강도도 기준의 4배로 증가하였다.

Keywords

References

  1. J. K. Park, I. H. Choi, H. H. Park, S. W. Yang, K. T. Kim & S. S. Kang. (2016). Design of Double Layer Shielding Structure using Eco-friendly Shielding Materials, Journal of the Korean Society of Radiology, 10(8), 559-563. DOI : 10.7742/jksr.2016.10.8.559
  2. K. Yue et al. (2009). A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosim, 133, 256-260. DOI : 10.1093/rpd/ncp053
  3. Sony Ahmed et al. (2019). Polyethylene Based Jute Reinforced Composite Materials for Radiation Shielding Application by Using Magnetite as Filler, Euro. J. Adv. Engg. Tech, 6(9), 1-11
  4. A. H. O. Alkhayatt & A. Al-Azzawi. Alakayashi. (2016). Rheological and optical characterization of polyvinyl pyrrolidone (PVP) - polyethylene glycol (PEG) polymer blends, IOSR Journal of Applied Physics, 8(1), 11-18. DOI: 10.9790/4861-08111118
  5. T. Nakagawa, H. B. Hopfenberg & V. Stannett. (1971). Radiation protection of poly(vinyl chloride) by N methyl dithiocarbamate substitution. Journal of Applied Polymer Science, 15(3), 747-758. DOI : 10.1002/app.1971.070150319
  6. Wasan K, Jassim T. Mahdi & Ammar S. Hameed. (2019). Measurement technique of linear and mass attenuation coefficients of polyester, AIP Conference Proceedings, 2144(1), 1-11 DOI : 10.1063/1.5123088
  7. Oleksy, M., Heneczkowski, M. & Galina, H. (2005). Chemosetting resins containing fillers Unsaturated polyester resin compositions containing modified smectites, Journal of Applied Polymer Science, 96(3), 793-801. DOI : 10.1002/app.21512
  8. Majid Mirzaei, Mohammad Zarrebini & Ahmad Shirani. (2018). X-ray shielding behavior of garment woven with melt-spun polypropylene mono-filament. Powder Technology, 345(1), 15-25 DOI : 10.1016/j.powtec.2018.12.069
  9. S. Yamazaki1, R. Furukawa & N. Morimitsuet. (2019). Disposal criteria setting method considering damaged position of X-ray protective clothing, European socity of Radiology, 640, 1-8 DOI : 10.26044/ecr2019/C-0640
  10. A. R. Jeong, J. K. Park & I. H. Choi. (2019). The Fabrication and Characteristic Evaluation of Radiation Protection Sheets using an Eco-friendly Shielding Material. Electronics and Information Engineers, 6, 1380-1381.
  11. C. H. Kim & S. H. Cho. (2019). Analysis of the Correlation between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Films. Applied science, 9, 2-9. DOI : 10.3390/app9091765
  12. K. W. Kim, S. H. Choi, K. Y. Kim, I. P. Lee, S. G. Hwang & K. R. Dong. (2017). Performance Evaluation of Aprons according to Lead Equivalent and Form Types. Journal of Radiation Industry, 10(4), 219-225.
  13. C. H. Kim & J. R. Choi. (2018). Analyzing physical characteristics and shielding efficiency for non-lead medical radiation shielding sheets improved using PMMA. Radiation Effects and Defects in Solids, 174, 284-293 DOI : 10.1080/10420150.2018.1563897
  14. J. H. Song, S, S. Shin & S. I. Kim. (2016). A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil, Nuclear Fuel Cycle and Waste Technology, 14(3), 245-251, DOI : 10.7733/jnfcwt.2016.14.3.245
  15. Yu, L., Bruesewitz. M. R. & Vrieze, T. J. (2019). Lead Shielding in Pediatric Chest CT: Effect of Apron Placement Outside the Scan Volume on Radiation Dose Reduction. American Journal of Roentgenology, 212(1), 151-156. DOI : 10.2214/AJR.17.19405
  16. J. H. Yun, J. A. Hou, W. G. Jang & J. H. Kim. (2019). Preparation and Optimization of Composition of Medical X-ray Shielding Sheet Using Tungsten. Polymer Korea, 43(3), 346-350. DOI : 10.7317/pk.2019.43.3.346
  17. S. C. Kim, H. K. Lee & J. H. Cho. (2014). Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiat. Eff. Defect. Solids, 169, 584-591 DOI : 10.1080/10420150.2014.920019
  18. L. Chang et al. (2015). Preparation and characterization of tungsten/epoxy composites for ${\gamma}$-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. B, 356-357, 88-93. DOI : 10.1016/j.nimb.2015.04.062