DOI QR코드

DOI QR Code

Encoder Type Semantic Segmentation Algorithm Using Multi-scale Learning Type for Road Surface Damage Recognition

도로 노면 파손 인식을 위한 Multi-scale 학습 방식의 암호화 형식 의미론적 분할 알고리즘

  • Shim, Seungbo (Korea Institute of Civil Engineering and Building Technology, Future Infrastructure Research Center) ;
  • Song, Young Eun (Hoseo University, Department of Electrical Engineering)
  • 심승보 (한국건설기술연구원 차세대인프라연구센터) ;
  • 송영은 (호서대학교 전기공학과)
  • Received : 2020.03.08
  • Accepted : 2020.04.15
  • Published : 2020.04.30

Abstract

As we face an aging society, the demand for personal mobility for disabled and aged people is increasing. In fact, as of 2017, the number of electric wheelchair in the country continues to increase to 90,000. However, people with disabilities and seniors are more likely to have accidents while driving, because their judgment and coordination are inferior to normal people. One of the causes of the accident is the interference of personal vehicle steering control due to unbalanced road surface conditions. In this paper, we introduce a encoder type semantic segmentation algorithm that can recognize road conditions at high speed to prevent such accidents. To this end, more than 1,500 training data and 150 test data including road surface damage were newly secured. With the data, we proposed a deep neural network composed of encoder stages, unlike the Auto-encoding type consisting of encoder and decoder stages. Compared to the conventional method, this deep neural network has a 4.45% increase in mean accuracy, a 59.2% decrease in parameters, and an 11.9% increase in computation speed. It is expected that safe personal transportation will be come soon by utilizing such high speed algorithm.

고령화 사회에 접어들면서 거동이 어려운 장애인과 고령자의 개인 교통수단에 대한 수요가 증가하고 있다. 실제로 2017년 기준 전국 전동보장구 보급수는 9만여 대로 지속해서 증가하는 추세다. 하지만 장애인 및 고령자의 판단 능력과 조정 능력은 정상인보다 상대적으로 차이가 있는 관계로 주행 중 사고 발생의 가능성이 크다. 다양한 사고의 원인 중 하나는 도로 노면상태의 불균형으로 인해 개인 이동 수단 조향 제어의 간섭이다. 본 논문에서는 이 같은 사고를 예방하고자 도로 노면 상태를 고속으로 인지할 수 있는 암호화 형식 의미론적 분할 알고리즘을 소개한다. 이를 위하여 도로 노면 파손이 포함된 1,500여 장의 학습용 데이터와 150여 장의 테스트용 데이터를 새롭게 구성하였다. 그리고 이를 활용하여 기존의 Encoder와 Decoder 단계로 구성된 Auto-encoder 방식과 달리 Encoder 단계로 이루어진 심층 신경망을 제안하였다. 이 심층 신경망은 기존의 방식과 비교했을 때 평균 정확도(Mean Accuracy)는 4.45% 증가하였고 파라미터는 59.2% 감소하였으며 연산 속도는 11.9% 향상되었다. 이 같은 고속 알고리즘을 활용하여 안전한 개인 이동 수단이 확대 적용되길 기대한다.

Keywords

References

  1. Akagic A., Buza E., Omanovic S. and Karabegovic A.(2018), "Pavement crack detection using Otsu thresholding for image segmentation," in Proc. 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia pp.1092-1097.
  2. Amhaz R., Chambon S., Idier J. and Baltazart V.(2016), "Automatic crack detection on two-dimensional pavement images: An algorithm based on minimal path selection," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp.2718-2729. https://doi.org/10.1109/TITS.2015.2477675
  3. Argyros A., Georgiadis P., Trahanias P. and Tsakiris D.(2002), "Semi-autonomous navigation of a robotic wheelchair," Journal of Intelligent and Robotic Systems, vol. 34, no. 3, pp.315-329. https://doi.org/10.1023/A:1016371922451
  4. Bang S., Park S., Kim H. and Kim H.(2019), "Encoder-decoder network for pixel-level road crack detection in black-box images," Computer Aided Civil and Infrastructure Engineering, vol. 34, no. 8, pp.713-727. https://doi.org/10.1111/mice.12440
  5. Cao W., Liu Q. and He Z.(2020), "Review of Pavement Defect Detection Methods," in IEEE Access, vol. 8, pp.14531-14544. https://doi.org/10.1109/ACCESS.2020.2966881
  6. Chun C., Shim S., Kang S. and Ryu S.(2018), "Development and evaluation of automatic pothole detection using fully convolutional neural networks," Journal of Korea Institute of Intelligent Transport System, vol. 17, no. 5, pp.55-64.
  7. Eisenbach M., Stricker R., Seichter D., Amende K., Debes K., Sesselmann M., Ebersbach D., Stoeckert U. and Gross H.(2017), "How to get pavement distress detection ready for deep learning? A systematic approach," in Proc. International Joint Conference on Neural Networks (IJCNN), Anchorage, Alaska, pp.2039-2047.
  8. Fan Z., Wu Y., Lu J. and Li W.(2018), "Automatic pavement crack detection based on structured prediction with the convolutional neural network," arXiv:1802.02208. [Online]. Available: https://arxiv.org/abs/1802.02208.
  9. Glorot X. and Bengio Y.(2010), "Understanding the difficulty of training deep feedforward neural networks," in Proc. 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, pp.249-256.
  10. Howard A. G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M. and Adam H.(2017), "Mobilenets: Efcient convolutional neural networks for mobile vision applications," arXiv:1704.04861. [Online]. Available: https://arxiv.org/abs/1704.04861.
  11. Iandola F., Moskewicz M., Karayev S., Girshick R., Darrell T. and Keutzer K.(2014), "Densenet: Implementing efficient convnet descriptor pyramids," arXiv:1404.1869. [Online]. Available: https://arxiv.org/abs/1404.1869.
  12. Ilas C.(2013), "Electronic sensing technologies for autonomous ground vehicles: A review," in Proc. 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, pp.1-6.
  13. Jenkins M. D., Carr T. A., Iglesias M. I., Buggy T. and Morison G.(2018), "A deep convolutional neural network for semantic pixel-wise segmentation of road and pavement surface cracks," in Proc. 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, pp.2120-2124.
  14. Jo Y. and Ryu S.(2016), "Pothole detection algorithm based on saliency map for improving detection performance," Journal of Korea Institute of Intelligent Transport System, vol. 15, no. 4, pp.104-114. https://doi.org/10.12815/kits.2016.15.4.104
  15. Kim T. and Ryu S. K.(2014), "Review and analysis of pothole detection methods," Journal of Emerging Trends in Computing and Information Sciences, vol. 5, no. 8, pp.603-608.
  16. Kingma D. P. and Ba J. L.(2015), "ADAM: a method for stochastic optimization," in Proc. third International Conference on Learning Representations (ICLR), San Diego, California, pp.1-15.
  17. Kobayashi Y., Kinpara Y., Shibusawa T. and Kuno Y.(2009), "Robotic wheelchair based on observations of people using integrated sensors," in Proc. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, USA, pp.2013-2018.
  18. Lawrence T. L.(1985), "Health care facilities for the elderly in Japan," International Journal of Health Services, vol. 15, no. 4, pp.677-697. https://doi.org/10.2190/Y409-DEYJ-8YG1-W2Y8
  19. Li H., Song D., Liu Y. and Li B.(2019), "Automatic pavement crack detection by multi-scale image fusion," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp.2025-2036. https://doi.org/10.1109/TITS.2018.2856928
  20. Li J., Zhao X. and Li H.(2019), Method for detecting road pavement damage based on deep learning, Health Monitoring of Structural and Biological Systems XIII. International Society for Optics and Photonics, p.109722D.
  21. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y. and Berg A. C.(2016), "SSD: Single shot multibox detector," in Proc. 14th European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, pp.21-37.
  22. Long J., Shelhamer E. and Darrell T.(2015), "Fully convolutional networks for semantic segmentation," in Proc. the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp.3431-3440.
  23. Maeda H., Sekimoto Y., Seto T., Kashiyama T. and Omata H.(2018), "Road damage detection and classification using deep neural networks with smartphone images," Computer-Aided Civil Infrastructure Engineering, vol. 33, no. 12, pp.1127-1141. https://doi.org/10.1111/mice.12387
  24. Marszalek M. and Schmid C.(2007), "Accurate object localization with shape masks," in Proc. the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, pp.1-8.
  25. Nakane J. and Farevaag M.(2004), "Elder care in Japan," Perspectives (Gerontological Nursing Association (Canada), vol. 28, no. 1, pp.17-24.
  26. Prechelt L.(1998), "Early stopping-but when?" Neural Networks, vol. 11, no. 4, pp.761-767. https://doi.org/10.1016/S0893-6080(98)00010-0
  27. Redmon J., Divvala S., Girshick R. and Farhadi A.(2016), "You only look once: Unified, real-time object detection," in Proc. the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp.779-788.
  28. Ren S., He K., Girshick R. and Sun J.(2015), "Faster R-CNN: towards real-time object detection with region proposal networks," in Proc. Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, Canada, pp.91-99.
  29. Ronneberger O., Fischer P. and Brox T.(2015), "U-net: Convolutional networks for biomedical image segmentation," in Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, pp.234-241.
  30. Shi Y., Cui L., Qi Z., Meng F. and Chen Z.(2016), "Automatic road crack detection using random structured forests," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 12, pp.3434-3445. https://doi.org/10.1109/TITS.2016.2552248
  31. Szegedy C., Vanhoucke V., Ioffe S., Shlens J. and Wojna Z.(2016), "Rethinking the inception architecture for computer vision," in Proc. the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp.2818-2826.
  32. Zou Q., Zhang Z., Li Q., Qi X., Wang Q. and Wang S.(2019), "DeepCrack: Learning hierarchical convolutional features for crack detection," IEEE Transactions on Image Processing, vol. 28, no. 3, pp.1498-1512. https://doi.org/10.1109/TIP.2018.2878966

Cited by

  1. Otsu’s Image Segmentation Algorithm with Memory-Based Fruit Fly Optimization Algorithm vol.2021, 2020, https://doi.org/10.1155/2021/5564690