DOI QR코드

DOI QR Code

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current

배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터

  • Received : 2020.05.02
  • Accepted : 2020.05.29
  • Published : 2020.06.30

Abstract

In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

본 논문에서는 배터리 관리 시스템 (BMS)에서 2차 전지 배터리를 통해 흐르는 전류의 정밀한 측정을 위한 cascaded-of-integrator feedforward (CIFF) 구조의 단일 비트 2차 델타-시그마 모듈레이터를 제안하였다. 제안된 모듈레이터는 2개의 스위치드 커패시터 적분기, 단일 비트 비교기, 비중첩 클록 발생기 및 바이어스와 같은 주변 회로로 구현하였다. 제안된 구조는 낮은 공통 모드 입력 전압을 가지는 low-side 전류 측정 방법에 적용되도록 설계되었다. Low-side 전류 측정 방법을 사용하면 회로 설계에 부담이 줄어들게 되는 장점을 가진다. 그리고 ±30mV 입력 전압을 15비트 해상도를 가지는 ADC로 분해하기 때문에 추가적인 programmable gain amplifier (PGA)를 구현할 필요가 없어 수 mW의 전력소모를 줄일 수 있다. 제안된 단일 비트 2차 CIFF 델타-시그마 모듈레이터는 350nm CMOS 공정으로 구현하였으며 5kHz 대역폭에 대해 400의 oversampling ratio (OSR)로 95.46dB의 signal-to-noise-and-distortion ratio (SNDR), 96.01dB의 spurious-free dynamic range (SFDR) 및 15.56비트의 effective-number-of-bits (ENOB)을 달성하였다. 델타 시그마 모듈레이터의 면적 및 전력 소비는 각각 670×490㎛2 및 414㎼이다.

Keywords

References

  1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", J. Power Sources, vol. 226, pp. 272-288, Mar. 2013. https://doi.org/10.1016/j.jpowsour.2012.10.060
  2. A. Vayrynen and J. Salminen, "Lithium ion battery production", J. Chem. Thermodyn, vol. 46, pp. 80-85, 2012. https://doi.org/10.1016/j.jct.2011.09.005
  3. K. W. E. Cheng, B. P. Divakar, H. J. Wu, K. Ding, and H. F. Ho, "Battery-management system (BMS) and SOC development for electrical vehicles", IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76-88, Jan. 2011. https://doi.org/10.1109/TVT.2010.2089647
  4. L. Siguang and Z. Chengning, "Study on battery management system and lithium-ion battery", Proc. Int. Conf. on Computer and Automation Engineering. ICCAE '09, pp. 218-222, Mar. 2009.
  5. S. Ziegler, R.C. W, H.H. Iu, L.J. Borle, and J. Borle "Current sensing techniques: A review", IEEE Sensors Journal, Vol. 9, No. 4, pp. 354-376, 2009. https://doi.org/10.1109/JSEN.2009.2013914
  6. C. M. Johnson and P. R. Palmer, "Current measurement using compensated coaxial shunts", Proc. IEE Sci., Measure. Technol., vol. 141, pp. 471-480, Nov. 1994. https://doi.org/10.1049/ip-smt:19941494
  7. J. A. Ferreira, W. A. Cronje, and W. A. Relihan, "Integration of high frequency current shunts in power electronic circuits", IEEE Trans. Power Electron., vol. 10, pp. 32-37, 1995. https://doi.org/10.1109/63.368463
  8. W. F. Ray and C. R. Hewson, "High performance Rogowski current transducers", Proc. IEEE Ind. Appl. Conf., pp. 3083-3090, 2000.
  9. S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, NJ, Piscataway:IEEE Press/Wiley, 2017.
  10. https://droneshopperth.com.au/battery-safety-data-sheets/
  11. F. Cordova and V. Olivares, "Design of Drone Fleet Management Model in A Production System of Customized Products", Proc. IEEE Int. Conf. on Computers Communications and Control. ICCCC '16, pp. 165-172, May 2016.
  12. S.H. Shalmany, D. Draxelmayr, "A ${\pm}5$ A Integrated Current-Sensing System With ${\pm}0.3$% Gain Error and $16{\mu}A$ Offset From $-55^{\circ}C$ to $+85^{\circ}C$", IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 800-808, Apr. 2016. https://doi.org/10.1109/JSSC.2015.2511168
  13. S.H. Shalmany, D. Draxelmayr, "A ${\pm}36-A$ Integrated Current-Sensing System With a 0.3% Gain Error and a $400-{\mu}A$ Offset From $-55^{\circ}C$ to $+85^{\circ}C$", IEEE J. Solid-State Circuits, vol. 52, no.4, pp. 1034-1043, Apr. 2017. https://doi.org/10.1109/JSSC.2016.2639535
  14. G. Ahn, D. Chang, M. Brown, N. Ozaki, H. Youra, K. Yamamura, K. Hamashita, K. Takasuka, G. C. Temes and U. Moon, "A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators", IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2398-2407, Dec. 2005. https://doi.org/10.1109/JSSC.2005.856286
  15. Y. Chae, I. Lee, and G. Han, "A 0.7 V $36{\mu}W$ 85 dB DR Audio ${\Delta}{\Sigma}$ Modulator Using Class-C Inverter", Proc. IEEE Int. Solid-State Circuits Conf., pp. 490-491, 2008.
  16. J. M. de la Rosa, R. del Rio, CMOS Sigma-Delta Converters: Practical Design Guide, NJ, Hoboken:Wiley-IEEE Press, 2013.
  17. J. Roh, S. Byun, Y. Choi, H. Roh, Y.-G. Kim, and J.-K. Kee, "A 0.9-V $60-{\mu}W$ 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range", IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 361-370, Feb. 2008. https://doi.org/10.1109/JSSC.2007.914266
  18. D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York:Wiley, 1997.
  19. Y. Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, MA, Norwell:Kluwer, 2002.
  20. R. J. Baker, CMOS Mixed-Signal Circuit Design, New York:IEEE Press, 2002.
  21. R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, "Design-oriented estimation of thermal noise in switched-capacitor circuits", IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 52, no. 11, pp. 2358-2368, Nov. 2005. https://doi.org/10.1109/TCSI.2005.853909