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Introduction
As microorganisms are repeatedly subcultured in the laboratories, the lag phase is shortened and the growth

rate is increased compared to the initial culture. This is the result of “struggling for existence”, as Darwin stated.
During the process of competing in an environment with limited resource, adaptive mutations are passed down,
which bring about changes in the whole population. In this way, unintended evolution occurs over a short period.
Adaptive laboratory evolution (ALE) is a narrow-experimental evolution that mimics this natural phenomenon in
laboratory and derives the desired phenotype. It is possible to change the environment by applying artificial
selection pressure and obtain the ameliorated organism generated by the accumulation of beneficial mutations via
natural selection [1, 2]. ALE was first used by the evolutionary scientist Dallinger in the seven-year high-
temperature adaptation experiment [3] and has since been applied to studies on various organisms, from
microalgae, mammalian cells, and viruses, to standard model organisms such as E. coli and yeast [4-9]. 

Efficient rational engineering of cellular metabolism is possible only if comprehensive knowledge of metabolic
pathways is acquired; however, this aspect is elusive even in the most well-characterized model organism, E. coli.
As coenzymes such as ATP, NADH, and NADPH are used in multiple metabolic reactions in common, complex
interactions between metabolic reactions frequently impede strain improvement, resulting in different metabolic
outcomes (e.g., sub-optimal growth, lower product concentration) [6, 10]. Besides, practical difficulties arise
when the genetic manipulation itself is complicated by polyploidy, gene essentiality, etc. ALE can overcome these
limitations because it does not require prior knowledge of the genotype-phenotype relationship and is easy to
implement practically. In particular, it is advantageous for inducing a counter-intuitive phenotype spanning
numerous intracellular pathways such as diverse stress tolerances and rapid growth in specific environments. ALE
has been used as a powerful complement to metabolic engineering by subsequently re-optimizing the cellular
fitness of crippled recombinants [11, 12]. In addition to the strain improvement, the omics approach for the
analysis of causative mutations in growth-improved strains is used for expanding intracellular regulatory
networks by revealing underlying mechanisms that regulate cell metabolism [6, 13-16]. For example,
transcriptome analysis of evolved E. coli with minimal genome showed that increasing the Entner–Doudoroff
pathway flux, which enables efficient glucose utilization and increased intracellular reducing power, contributed
to rapid growth [12]. Thus, ALE provides a straightforward reverse engineering approach that can overcome the
shortcomings of existing rational metabolic engineering [2, 17].

Industrial microorganisms have long been exploited as key producers in almost every field, including food,
pharmaceuticals, and other value-added chemical production. Efforts to eliminate obstacles and maximize
productivity in bio-based processes are still ongoing, and ALE is one of the most effective approaches for this
endeavor. In particular, microorganisms have the advantages like easy control of culture conditions, short
generation time, easy manufacturing, and storage of living fossil records for each period [18]; therefore, research
on microorganisms utilizing ALE has been actively conducted. Recently, a multi-disciplinary approach termed
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“systems metabolic engineering”, which encompasses systems biology, synthetic biology, and evolutionary
engineering with the existing metabolic engineering approaches, has paved the way for the industrial use of
microbial ALE. 

This review presents recent ALE studies on industrial microorganisms, major considerations for efficient
experimental design, and highlights the utility of various tools and strategies for strain optimization.

Empirical Studies of ALE for Industrial Application 
The development of industrial strains aims to maximize productivity (product formation in unit time) and

yield (product formation per substrate consumption) [19]. For industrial process efficiency, ALE of an industrial
host can contribute to cut down the cycle time and improve product titer, strain tolerance, and substrate utilization
ability. Application of ALE for strain improvement is typically categorized as 1) optimization of growth on a
specific nutrient and induction of prototrophy, 2) growing under harsh conditions (non-optimal pH and
temperature) or tolerating adverse environment like inhibitors generated during the process, 3) production of
new substances or increment of product titer.

Empirical ALE studies aimed for improved productivity of value-added products and substrate flexibility of
strains were listed to identify the preferred production strain, the evolutionary duration, and conditions for each
product. These include examples of E. coli, S. cerevisiae, C. glutamicum, microalgae, and Streptomyces sp., used for
increasing production of metabolites and recombinant proteins that can be used in the pharmaceutical, food,
bioplastic, and biofuel industries [8, 20-43]. The cases of adaptive evolution of E. coli, C. glutamicum, S. cerevisiae,
and G. oxidans that enables economical bioconversion process by maximizing the utilization of relatively
inexpensive substrate such as whey and biorenewable resources were also included. [9, 44-51]. Some detailed
examples are discussed in the following sections.

Practical Considerations of ALE
There are several factors that the researcher should consider for successful ALE results. First, the mode of

cultivation should be determined by considering the characteristics of the host strain, available man-power, and
other costs incurred during the process. Batch and continuous culture are the two main methods of culturing
microorganisms. As described in the review by Sandberg et al. [52], most of the ALE were performed using batch
culture, which is simple to execute and requires no special apparatus, thus incurring less expenses. In addition, it is
possible to observe a common mutation by reducing the culture volume to a small scale, such as 96 wells, or by
increasing the number of replicates through automation [53]. This makes it possible to clearly identify the
direction of evolution in a certain environment. However, the population density varies from flask to flask and the
fluidity of the physico-chemical environment, including pH and dissolved oxygen, is difficult to keep constant due
to changes in cell density that depend on the residual amount of nutrients [54]. This may lead to erroneous
evolutionary pressure, which causes an undesired phenotype and makes it difficult to identify the relationship
between the genotype and phenotype [55]. However, continuous culture maintains consistent environmental
conditions, supplies nutrients, and manages to keep the cell density and growth rate constant [54-56]. There are
also some disadvantages to this method. Since it has a long running time, it is difficult to maintain sterility and the
stability of metabolic engineered strains, although mutation is helpful in terms of evolution [57]. There is also the
possibility of biased evolution of mutants that have adhesive properties to prevent washing out [58]. Most of all, it
is expensive to set up and operate, and it is hard to conduct in parallel. To reduce the cost and enable parallel
operation, while taking advantage of continuous culture, miniaturization of the vessel can be an alternative route
[59].

Second, it is essential to apply the appropriate selection pressure to screen the desired phenotype from the entire
population. For the purpose of increasing the growth rate of organisms, maximizing the use of alternative carbon
sources, harsh conditions (non-optimal pH and temperature), or tolerance for substances generated during
production, the organisms favorable for survival in specific conditions reproduce rapidly and the desired
phenotype and growth rate are coupled, facilitating screening. For example, overproducer of antimicrobial
substances can be easily identified by superior cell viability in hostile environment [39, 40]. However, the
phenotype is sometimes not linked to an improvement in growth rate. Overproduction of growth-irrelevant
metabolite or an evolution-induced altered mutation acts as a metabolic burden thus reducing the growth rate or
biomass [60]. Therefore, metabolic pathways are adjusted to couple desired phenotypes to growth for growth-
based selection. This method of applying artificial evolutionary pressure by metabolic engineering was proposed
with the name “metabolic engineering-guided evolution (MGE)” [61]. Considerable numbers of the studies
presented in Table 1 started with a mutant rather than a wild type strain, or a genetically modified mid-point
strain, to prevent efflux of resources that interfere with production or to exert evolutionary pressure. However, in
the process of MGE, prior knowledge for rational design is required, making its application limited to targeting
well-known materials; it also may require complicated manipulation. In addition to MGE, as an alternative to
screening growth-uncoupled phenotype, the transcription factor-based or riboswitch-based biosensors has
recently emerged as detectors of intracellular substances not related to growth [27, 29, 62]. In the ALE study of C.
glutamicum engineered for the production of L-valine, which was the first to propose this method [29], the cells
expressing the downstream green fluorescent protein (GFP) reporter gene depending on whether the
transcription factor (Lrp) binds to the promoter were sorted by fluorescence-activated cell sorting (FACS). The
group showing strong fluorescence was isolated and cultivated in an iterative manner to induce evolution. In
another instance, Choi et al. reported that it is possible to increase the production of a recombinant protein by
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Table 1. Adaptive laboratory evolutions of industrial microorganisms categorized by product and feedstock.
Product Species Condition Span Reference

Organic acid and amino acid
Chirally pure 
lactates

E. coli SZ194,
ΔldhA::ldhL-FRT

Glucose minimal medium 
containing betaine

up to 120 days [20]

Carboxylic acid E. coli MG1655, 
ΔfadDΔpoxBΔackA-pta: cmR

MOPS minimal medium 
with octanoic acid

714 h [21]

D-lactic acid E. coli W strain
ΔpflBΔptaΔadhE, Δfrd-
ABCDΔaldA, ΔCscR 

LB or NBS medium About 56 days [22]

L-lactic acid E. coli SZ470, 
ΔadhEΔldhA::ldhL

LB-xylose medium 3 months [23]

D-lactate E. coli KO11 (ATCC 55124) 10% glucose LB medium About 12 days [24]
L-lactic acid E. coli W3110, ΔfocA-

pflB::FRTΔfrdBCΔadhE::FRT 
ackA::FRTΔldhA::(ldhL-frt)

GlcM9 medium 12 days [8]

Succinic acid E. coli K12 ΔptsGΔmanX 
E. coli K12 ΔptsI

LB medium 48 h [25]

Succinic acid S. cerevisiae CEN.PK113-5D, 
Δsdh3Δser3Δser33

Gradually reducing glycine nd* [26]

Muconic acid S. cerevisiae BY4741, 
Δaro3Δaro4::PGPD-aro4k229l
Ty2δ::PGPD-
ECL_01944opt∆zwf1[115]

Geneticin and 4FP 
(anti-metabolite) 
containing medium

1,325 h [27]

L-ornithin C. glutamicum ATCC 13032, 
ΔargFΔproBΔspeE

Gradually reducing 
ornithine

70 days [28]

Alcohol
Ethanol S. cerevisiae CEN.PK113-7D Sucrose-limited chemostat 90 generations [30]
Ethanol S. cerevisiae BY4741

expressing xylose isomerase 
from B. cenocepacia

YNB medium containing 
xylose

40 passages [31]

1-Butanol E. coli JCL166, 
ΔadhEΔldhAΔfrdBC

Conversion from LB 
medium to M9 medium

nd* [32]

Isobutanol E. coli JCL16
NTG-created mutant

GlcM9 medium with 
norvaline (valine analog) 

nd* [33]

Lipid
Lipid C. reinhardtii cc4324 derivatives Gradually reducing NH4Cl 

(nitrogen)
84 days [34]

Lipid R. opacus PD630 Gradually increasing 
phenol concentration

40 passages [35]

Pigment
Carotenoids D. salina (UTEX LB #200) Blue light stress 16 cycles

(each cycle was 
conducted for 5 days)

[36]

Lycopene E. coli MG1655 with plasmid 
(lycopene synthase gene, 
mutator module and sensor)

Designed by FREP 432 h [37]

β-carotene S. cerevisiae GSY1136 strain 
[116]

Hydrogen peroxide stress about 40 days [38]

Antibacterial & antifungal agent
Antibacterial 
compounds 
against MRSA

S. clavuligerus 27064 Co-culture with methicillin 
resistant S. aureus(MRSA) 
N315

About 90 days [39]

Multiple 
antifungal agents

S. variabilis AFP2 Co-culture with C. 
neoformans 14116 

30 days [40]

ETC
Dihydroxyacetone E. coli strain C, ΔldhA::FRT, 

ΔadhE::FRT, ΔackA::FRT 
NBS or AM1 medium with 
glucose, gradually reducing 
NaOAc

>2,000 
generations 

[41]

Improved 
methyltransferases 
(Mtases)activity 

E. coli JW3582, ΔcysE [117] M9 medium supplemented 
with methionine and 
substrates of Mtases

nd* [42]

Recombinant 
protein

C. glutamicum ATCC 13032 7-Times sorting by 
measuring fluorescence 

in 2 weeks [43]

*nd-no data
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inducing a parB mutation that increases the copy number of the plasmid in the cell by sorting and passaging cells
with increased GFP expression using FACS [43]. As such, the usability of biosensor-based high-throughput
screening that enables straightforward and rapid screening is expected to increase in the future. 

The third is the time span, that is, when to stop the ALE and obtain the final evolution product. Determining the
end point is entirely up to the researcher's decision. Generally, due to the tendency for most causal mutations to fix
early, beneficial mutation rates tend to decrease with longer evolutionary periods [63], although this does not
mean that organisms stop adaptive evolution. A generation is generally the scale used to indicate the period of
evolution, and days and transferred numbers are also displayed depending on the experimental method. Because
of ambiguous criteria, it is difficult to compare experiments for evolutionary periods, even when the experiments
evolve the same strain. For this reason, cumulative cell divisions (CCDs) have been proposed as a new time scale.
CCD utilizes the total cumulative number of the whole population, which is substantially proportional to the
mutation rate, as a denominator so that it can describe an accurate quantitative criterion for ALE’s execution time
[64].

Successful ALE results depend on the heterogeneity of the population resulting from mutations [19, 64].
Although artificial mutagenesis may induce mutation of the parent strain to increase diversity, adjusting the
passage size (the amount of transferred cells) that can act as a bottleneck during serial transfer can also affect
diversity [52]. It is also important to keep the cell state constant for each cycle. In addition, considering that the
growth rate increases while the fitness increase decreases as the culture is prolonged, it seems trivial, but critical, to
optimize the passage method, such as gradually increasing the passage frequency and reducing the passage size.

Exploiting Genetic Engineering Tools to Assist Evolution
ALE can be accompanied by genetic engineering to reconstruct metabolic pathways or to identify causality

between mutations and phenotypic changes, as analyzed by WGS of evolutionary strains [61]. Classical metabolic
engineering tools such as lambda red recombinase expression vector of E. coli and suicide vector (pKmobsacB) of
C. glutamicum are widely used to introduce simple genetic changes in evolved strains [12, 65]. The advent of the
CRISPR (Clustered Regularly Interspaced Palindromic Repeats)-Cas (CRISPR-associated proteins) system,
recognized as a new genome editing tool, has made manipulating genes easier and more sophisticated. In addition
to direct genome disruptions such as point mutations, deletions, and insertions, combinatorial methods that use
improved Cas proteins (dCas9) or even other fused enzymes, such as CRISPR interference (CRISPRi) [66] and
CRISPR activation (CRISPRa) [67], have been developed to allow metabolic flux control. Recently, a prime editor
that fuses transcriptase was developed [68], and the scope of various recombinant productions is being expanded. 

The mutation rate in ALE is accelerated by population heterogeneity [69]. Therefore, to secure genetically
diverse libraries, random mutagenesis of whole cells using mutagens, such as N‐methyl-N'-nitro-N-
nitrosoguanidine, ethyl methane sulfonate, can be performed using the same principle as the classical in vitro
directed evolution [33, 70, 71]. However, the mutation rate increases in case of traditional in vivo mutagenesis,
while the efficiency may decrease because of hitch-hiking (neutral, deleterious) and non-target mutations. These
limitations can be overcome by targeted in vivo mutagenesis. Typical targeted in vivo mutagenesis includes an
orthogonal replication pair (vector and DNA polymerase), ColE1/Pol [72], OrthoRep [73], and Muta T7 [74],
which are composed of a phage-derived promoter, RNA polymerase, and DNA-damaging enzyme (cytidine

Table 1. Continued
Alternative 
substrate Species Condition Span Reference

Utilization of alternative carbon source
Lactose S. cerevisiae NCYC869-A3/T1[118] Semisynthetic lactose 

(SSlactose) medium,
>120 generations [44]

Xylose S. cerevisiae RWB 217 derived from 
CEN.PK102-3A [119]

Synthetic medium 
with glucose and 
xylose 

1,000 h [45]

Utilization of alternative carbon source
Xylose S. cerevisiae BY4741, Δgre3, URA::GPDp-

xylA*3-CYC1t-TEFpXKS1-CYC1t, Leu:: 
GPDp-xylA*3-RPM1t-TEFp- tal1-CYC1t
YDL236w:: His

Xylose medium 24 days [46]

Xylose and 
methanol

C. glutamicum ATCC 13032, derivatives CGXII medium with 
xylose and methanol

206 days [47]

Glucose G. oxydans 621H recombinant (mgdh::Gm) Glucose medium 50 days [9]
Glucose G. oxydans strain evolved to use glucose [9] Glucose medium 25 days [48]
Lactate or 
glycerol

E. coli MG1655 M9 minimal
Medium with lactate 
or glycerol

>600 generations [49, 50]

1,2-Propanediol E. coli MG1655, GC strain [120] M9 minimal medium 
with L-1,2- 
propanediol

700 generations [51]
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deaminase). Because the characteristics of each method (applicable species and mutation introduction method)
are different, it is important to use them properly according to the specific purpose. Furthermore, mutagenesis of
the target sequence can be achieved using modified CRISPR-Cas technology such as EvolvR [75], CasPER [76],
CREATE [77]. 

As to altering complex phenotypes, genome evolution approaches including genome shuffling [78], global
transcription machinery engineering (gTME) [79], and MAGE (multiplex automated genome engineering) [80]
are suitable. Sandberg et al. introduced several combinations of mutations in the starting strain using MAGE in
the study of thermotolerant E. coli, enabling more efficient causative mutations and epistatic interactions [81].
Recently, novel in vivo continuous mutagenesis, genome replication engineering-assisted continuous evolution
(GREACE) and feedback-regulated evolution of phenotype (FREP), which can generate mutations during
evolution, have been developed. GREACE enables mutagenesis coupled with selection during evolution using
DnaQ (the proofreading element of DNA polymerase) mutant library [82]. Luan et al., who first introduced this
system, developed n-butanol, acetate-tolerant E. coli for biofuel production. Subsequently, Wang et al. increased
the titer and yield of E. coli lysine by 14.8% and 9.3% using GREACE [83]. FREP is a synthetic gene circuit that
detects product concentrations in vivo and regulates the mutation rate of the genome [37]. Chou et al., the
inventors of FREP, increased tyrosine and lycopene yields in E. coli by approximately 5 and 3 times after 24 h,
respectively. 

As these approaches are capable of mutation control, they can compensate for the disadvantages of the existing
random mutagenesis, such as an unstable genotype and nonhomogeneous phenotype of the final strain; thus, they
could be promising strategies for industrial strain development. 

ALE for Developing Non-Recombinant Strains 
Productivity and product quality may be degraded due to environments that are not suitable for growth, such as

depletion of nutrients, low oxygen, and high osmolarity, which can occur on an industrial scale [84, 85]. Therefore,
as stated above, ALE is often accompanied by genetic manipulation. However, unlike the production of fine
chemicals without genetic materials, genetically modified microorganisms (GMMs) are rarely commercialized in
traditional food and probiotics industries [86]. Apart from the definition of food-grade genetically modified
organisms (GMOs) and the enactment of related laws, the production of GMO-derived food has been a constant
debate due to the combination of negative consumer perceptions and distrust of conglomerates [87]. The use of
GMMs, mostly composed of lactic acid bacteria and yeast, is disinclined because of the possibility of viable GMOs
in the product to colonize during the digestive period in the human body, even if they pass through the stomach
[88]. Although two genetically modified S. cerevisiae strains have been approved, the proportion of revenue they
earn in the real market is expected to be negligible, and it is expected that it will take a long time for GMMs to
become universal and affect the market [89]. 

Therefore, fermentation strains have been ameliorated through classical methods, such as random
mutagenesis, and natural conjugation and transformation [90]. These methods are not subject to the strict
regulations related to GMOs, but have the disadvantage that it is difficult to express brand-new characteristics not
inherent in the strain. Furthermore, in the case of brewing yeast, sexual hybridization is intricate due to the loss of
the spore-forming ability and sexual reproduction caused by industrial domestication [84, 91, 92], and random
mutagenesis is also limited because of the complex genome structure of the production strain. This may also lead
to the loss of the desired phenotype [89]. Experimental evolution is drawing attention as an efficient and non-
genetic engineering technique that can solve these problems. In adaptive evolution, strain aneuploidy and
polyploidy are not a problem [93, 94]. Additionally, there is no need for the complicated work of screening strains
of the desired phenotype and prior knowledge of genes involved in the attribute is not required [84]. For this
reason, in the case of strains used in fermentation or probiotics, it is advantageous to improve varieties through
ALE rather than genetic manipulation for commercialization. 

However, there are limits to improvements without genetic modification. Several yeast studies have produced
plant secondary metabolites through heterologous expression [95, 96], but relying only on evolution without
external DNA sources cannot drive non-intrinsic pathways, thus limiting the development and production of new
food flavors. This may lead to serious defects that do not lower unit costs. Another trepidation when using non-
recombinant is the difficulty in identifying the source of the production strain. A unique strain is the valuable
original technology of the company. However, the non-recombinant strain is naturally derived from the ancestral
wild type, and it can be difficult to distinguish clearly because there is no characteristic factor to distinguish the
strain due to the absence of an artificial marker, which might lead a conflict of interests between industries.
However, despite these shortcomings, at this point, where the GMO controversy has not easily faded for decades,
the improvement of production strains using experimental evolution without the influx of external DNA is
anticipated to be used as a reasonable and practical strategy to ensure stable profits.

A Genome-Scale Metabolic Model for Insight into Integrated Cellular Systems 
The optimization of cell factories is an iterative process (design-build-test-learn [DBTL] cycle) consisting of

strain construction, evaluation, and data analysis to obtain the desired product [97, 98]. In the process of
constructing an overproducer, the collaboration of ALE with the genome-scale metabolic model (GEM) [10], one
of several mathematical models describing metabolic processes, facilitates obtaining a desirable phenotype [99].
GEM is an in silico model derived from genome-scale network reconstruction (GENRE) based on an organism-
specific biochemical, genetic, and genomic (BiGG) knowledge base, which converts network construction into
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mathematical forms to computationally assess phenotypic properties [100]. Beginning with Haemophilus
influenza [101], GEMs of various species have been constructed to date, and after repeated development, a more
sophisticated level of model prediction is now possible (Table 2) [102]. These models contain information on gene
products involved in metabolic reactions, as well as stoichiometric information of all metabolic reactions in cells;
hence the entire network of life [10, 63]. Therefore, GEMs show the correlation between genotype and phenotype
and can be used to predict physiological changes, such as cellular redox state or energy metabolism according to
the theoretical maximum yield of product and genome perturbation. By using GEM, Otero et al. made it possible
to guide the experimental direction by predicting in silico gene deletion in evolutionary engineering combining S.
cerevisiae biomass and succinate production [26]. They identified the target gene to be deleted using the OptGene
algorithm to couple the objective function (improved succinate production) and biomass. In order to prevent
succinate consumption within the TCA cycle and serine synthesis metabolism flux from glycolysis, sdh3, ser3,
ser33 were knocked out, and the subsequent ALE finally yielded a 7.7-fold increase in succinate yield glycine
prototroph. Likewise, in the study of adaptation against substrate alteration by Sandberg et al., it could be
explained why the specialist subpopulation arises on glucose/acetate switching, based on discrepancy in reaction
fluxes through the simulation of individual metabolic fluxes [103].

Furthermore, GEM and ALE can also be used together to derive the desired phenotype. In contrast with in silico
experimental predictions, the desired outcome is often elusive to attain (e.g., high-yield production) in vivo, due to
the high degree of connectivity between diverse pathways within the cellular system and not considering a large
number of regulatory constraints in GEM [10]. Through the ALE experiment, the latent potential of the
production host can be realized, and the knowledge obtained from the results of omics data analysis can be used to
refine the design again to complement the results. Ibarra et al. performed ALE to resolve inconsistencies between
in silico prediction and actual experimental results of E. coli growth rate when glycerol was provided as the sole
carbon source, enabling the yield of theoretical optimal growth results [11]. In recent years, since attempts have
been made to integrate not only metabolic processes in GEM, but also information about proteins (structure,
synthesis, and secretion pathways), prediction through modeling is expected to be more accurate [10, 19].

Automation of ALE
In the process of manual cultivation for a long time, several practical problems arise. First, it is very laborious to

continuously and frequently monitor cells during long-term experiments. Since most ALEs are performed for
increasing growth rates, the monitoring intervals should be shorter as cells evolve to accurately measure growth
rates; however, there are limitations to such manual approach. In addition, the batch culture used in many ALE
studies is more strenuous and error-prone because additional manual processes, such as periodic passage, are
required. These problems can be dealt with by the introduction of full or partial automation. For example, using a
machine, the passage of batch culture can be performed at a frequency 3-7 times higher than the manual process,
so it is not restricted by the experimenter's schedule, allowing passage at a constant growth stage and reducing

Table 2. The latest genome-scale metabolic models of industrial platform strains.
Organism Main products/applications Model Description Ref.

E. coli K-12 MG1655 Biofuel, multipurpose 
recombinant proteins

iML1515 1515 Genes, 2719 reactions, 
1192 metabolites

[120]

S. cerevisiae Alcoholic beverages, bakery 
products and bioethanol

Yeast8
ecYeast8
panYeast8
coreYeast8
proYeast8

1133 Genes, 3949 reactions, 
2680 metabolites

[121]

C. glutamicum 
ATCC13032

Amino acids iCW773 773 Genes, 1207 reactions, 
950 metabolites

[122]

B. subtilis Industrial enzymes and 
antibiotics

iBsu1144 1144 Genes, 1955 reactions, 
1103 metabolites

[123]

Alternaria sp. MG1 Resveratrol iYL1539 1539 Genes, 2255 reactions, 
2231 metabolites

[124]

S. coelicolor Antibiotics and secondary 
metabolites

Sco-GEM
EcSco-GEM

1777 Genes, 2612 reactions, 
2073 metabolites

[125]

C. vulgaris Lipids and pigments for biofuel 
and food supplements

iCZ946 946 Genes, 2,294 reactions, and 
1,770 metabolites

[126]

L. mesenteroides 
subsp. cremoris ATCC 
19254

Used as a starter in food 
fermentation (dairy, meat, 
vegetable product)

iLM.c559 559 Genes, 1088 reactions, 
1129 metabolites

[127]

L. reuteri JCM 1112 Used as a starter in food 
fermentation and used in 
probiotic product, reuterin

Lreuteri_530 530 Genes, 710 reactions, 
658 metabolites

[128]

N. salina Lipids and pigments for biofuel 
and food supplements

iNS934 934 Genes, 2345 reactions, 
1985 metabolites

[129]

C. reinhardtii Biofuel nd* 3726 Reactions, 2436 metabolites [130]

*nd-no data
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fluctuation of passage size. This can prevent beneficial mutation loss [104, 105]. The problem of maintaining
exponential growth and the appropriate selective pressure level can also be solved, unwanted effects caused by
manual adjustment can be minimized, and genetic diversity can be secured, resulting in a shorter time to obtain an
endpoint. In addition, it is possible to consolidate statistical significance by increasing the number of independent
replicates beyond the capacity of a person to perform [16], readily introducing changes in the culture environment
(substrate gradients, temperature, etc.) and monitoring the status in real time. Accordingly, ALE studies that
automate repetitive batch cultivation processes have been continuously reported [59, 81, 106-108]. By measuring
the optical density (OD), cell growth status can be checked and then automatically passed to the next vessel at the
right time to take advantage of the aforementioned, as well as to measure the pH and dissolved oxygen in real-time
to monitor the immediate response of the cells to the environment. There are also types of machinery that enhance
the automatic aspect of continuous culture. An morbidostat can detect a population increase and adjust the levels
of chemicals acting as the selection pressure, as feedback. A fluorostat, which combines fluorescence detection
with a turbidostat, can be applied to determine gene expression levels [109-111]. Recently, eVOLVER, a
framework consisting of open-source software and flexible hardware that can customize experimental conditions
according to a specific purpose, was developed. It was introduced as a tool that can be reconfigured in the
laboratory, and a detailed user guide to operate this platform is provided [112, 113]. High-throughput cultivation
techniques can be used to derive the outcome of experimental evolution more quickly and accurately, and the
acquired knowledge and outcomes can be used industrially, such as improved understanding of bioprocessing and
the resulting improved strains. However, considering that most of the automated systems introduced above are
laboratory scales of μL and mL, verification through scale-up is required.

Conclusion
In conclusion, connecting a theoretical study directly to the success of industrialization remains a challenging

task. The fragmentary knowledge of host metabolic pathways is insufficient to predict the downstream effects
caused by the complex network in the cell. The scale of the culture and the industrial process at the laboratory level
are different, which is also a major factor that hampers the practical use of the developed strain. Thus, it is
inevitable that considerable trials and errors in the process of constructing a microbial cell factory are conducted.
The point is that this series of processes should not just end in failure, but it is the interpretation of the results that
should complement the underlying knowledge and reduce the development process itself, resulting in cost savings
and industrial competitiveness. In this regard, ALE combined with systems biology and synthetic biology tools is
a prominent strategy that can be used in the design and build steps of the Design-Build-Test-Learn (DBTL) cycle
for microbial strain development (Fig. 1). The in silico metabolic model allows organic connectivity of the testing,
building, testing and learning with a more in-depth analysis of the integrated cell system perspective using WGS
and omics analysis data. In addition, automation and high-throughput screening of ALE have made more
accurate and rapid development and detection possible. In this context, the multi-disciplinary toolboxes

Fig. 1. Recent progress in tools and strategies for ALE. Adaptive laboratory evolution (ALE) is one of the most
preferred approaches to optimize host in the design-build-test-learn (DBTL) cycle. It elicits desired outcome efficiently along
with genome-scale metabolic model, genetic engineering tools and computational technology as well as aids the amelioration
of non-recombinant strain in the food industry. CRISPR-Cas system, Clustered Regularly Interspaced Palindromic Repeats-
CRISPR-associated proteins system; MAGE, multiplex automated genomic engineering. 
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applicable for the efficiency of the development process will continue to be developed, and the base knowledge of
various species should also be expanded so as not to be limited to a few platform species.
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