DOI QR코드

DOI QR Code

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano (Laboratory of Molecular Microbiology and Environmental Biotechnology, Autonomous University of Guerrero) ;
  • Segura, Daniel (Department of Molecular Microbiology, Institute of Biotechnology, National Autonomous University of Mexico) ;
  • Jimenez, Jeiry Toribio (Laboratory of Molecular Microbiology and Environmental Biotechnology, Autonomous University of Guerrero) ;
  • Barrera, Miguel Angel Rodriguez (Laboratory of Molecular Microbiology and Environmental Biotechnology, Autonomous University of Guerrero) ;
  • Pineda, Carlos Ortuno (Laboratory of Nucleic Acids and Proteins, Autonomous University of Guerrero) ;
  • Ramirez, Yanet Romero (Laboratory of Molecular Microbiology and Environmental Biotechnology, Autonomous University of Guerrero)
  • Received : 2019.09.25
  • Accepted : 2020.01.09
  • Published : 2020.06.28

Abstract

The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Keywords

References

  1. Romeo T. 1998. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29: 1321-1330. https://doi.org/10.1046/j.1365-2958.1998.01021.x
  2. Babitzke P, Romeo T. 2007. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10: 156-163. https://doi.org/10.1016/j.mib.2007.03.007
  3. Liu MY, Gui G, Wei B, Preston JF 3er, Oakford L, Yüksel U, et al. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272: 17502-17510. https://doi.org/10.1074/jbc.272.28.17502
  4. Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, et al. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184: 5130-5140. https://doi.org/10.1128/JB.184.18.5130-5140.2002
  5. Dubey AK, Baker CS, Romeo T, Babitzke P. 2005. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11: 1579-1587. https://doi.org/10.1261/rna.2990205
  6. Lapouge K, Schubert M, Allain FH, Haas D. 2008. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67: 241-253. https://doi.org/10.1111/j.1365-2958.2007.06042.x
  7. Romero Y, Guzman J, Moreno S, Cocotl-Yanez M, Vences-Guzman MA, Castaneda M, et al. 2016. The GacS/A-RsmA signal transduction pathway controls the synthesis of Alkylresorcinol Lipids that replace membrane phospholipids during encystment of Azotobacter vinelandii SW136. PLoS One 11: e0153266. https://doi.org/10.1371/journal.pone.0153266
  8. Tan Y, Liu ZY, Liu Z, Zheng HJ, Li FL. 2015. Comparative transcriptome analysis between csrA-disruption Clostridium acetobutylicum and its parent strain. Mol. Biosyst. 11: 1434-1442. https://doi.org/10.1039/C4MB00600C
  9. Esquerre T, Bouvier M, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M. 2016. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Sci. Rep. 6: 25057. https://doi.org/10.1038/srep25057
  10. Figueroa-Bossi N, Schwartz A, Guillemardet B, D'Heygere F, Bossi L, Boudvillain M. 2014. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev. 28: 1239-1251. https://doi.org/10.1101/gad.240192.114
  11. Broberg M, Lee GW, Nykyri J, Lee YH, Pirhonen M, Palva ET. 2014. The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl. Environ. Microbiol. 80: 1972-1984. https://doi.org/10.1128/AEM.03829-13
  12. Mukherjee S, Babitzke P, Kearns DB. 2013. FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis. J. Bacteriol. 195: 297-306. https://doi.org/10.1128/JB.01654-12
  13. Gu H, Qi H, Chen S, Shi K, Wang H, Wang J. 2018. Carbon storage regulator CsrA plays important roles in multiple virulence-associated processes of Clostridium difficile. Microb. Pathog. 121: 303-309. https://doi.org/10.1016/j.micpath.2018.05.052
  14. Toribio-Jimenez J, Rodriguez-Barrera MA, Hernandez-Flores G, Ruvacaba-Ledezma JC, Castellanos-Escamilla M, Romero-Ramirez Y. 2017. Isolation and screening of bacteria from Zea mays plant growth promoters. Rev. Int. Contam. Ambient 33: 143-150. https://doi.org/10.20937/RICA.2017.33.esp01.13
  15. Guevara-Luna J, Alvarez-Fitz P, Rios-Leal E, Acevedo-Quiroz M, Encarnacion-Guevara S, Moreno-Godinez ME, et al. 2018. Biotransformation of benzoa]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7. World J. Microbiol. Biotechnol. 34: 88. https://doi.org/10.1007/s11274-018-2469-9
  16. Sambrook J, Russell DW. 2006. Preparation and Transformation of Competent E. coli Using Calcium Chloride. CSH Protoc. 2006: pdb.prot3932.
  17. Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, et al. 2010. Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl. Environ. Microbiol. 76: 5046-5057. https://doi.org/10.1128/AEM.00660-10
  18. Shimizu K. 2013. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4: 1-35. https://doi.org/10.3390/metabo4010001
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  20. Rojas-Aparicio A, Rojas-Aparicio A, Hernandez-Eligio JA, Hernandez-Eligio JA, Toribio-Jimenez J, Toribio-Jimenez J, et al. 2018. Research article genetic expression of pobA and fabHB in Bacillus licheniformis M2-7 in the presence of benzo[a]pyrene. Genet. Mol. Res. 17(2): gmr16039916.
  21. Schmittgen TD, Livak KJ.2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  22. Gottesman S. 1984. Bacterial regulation: global regulatory networks. Annu. Rev. Genet. 18: 415-441. https://doi.org/10.1146/annurev.ge.18.120184.002215
  23. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 175: 4744-4755. https://doi.org/10.1128/JB.175.15.4744-4755.1993
  24. Hengge-Aronis R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2: 148-152. https://doi.org/10.1016/S1369-5274(99)80026-5
  25. Huisman GW, Siegele DA, Zambrano MM, Kolter R. 1996. Morphological and physiological changes during stationary phase. pp. 1672-1682. In: R Curtiss III, FC Neidhardt, JL Ingraham, CC Lin E, KB Low, B Magasanik, et al. (Eds.), Escherichia coli and Salmonella: cellular and molecular biology, American Society for Microbiology, Washington, D.C.
  26. Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB. 2011. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol. Microbiol. 82: 447-461. https://doi.org/10.1111/j.1365-2958.2011.07822.x
  27. Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40: 245-256. https://doi.org/10.1046/j.1365-2958.2001.02380.x
  28. Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P. 2002. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol. 44: 1599-1610. https://doi.org/10.1046/j.1365-2958.2002.02982.x