DOI QR코드

DOI QR Code

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea

대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성

  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil University)
  • 김종희 (서일대학교 식품영양학과)
  • Received : 2020.01.14
  • Accepted : 2020.03.03
  • Published : 2020.06.28

Abstract

The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.

자일란(xylan)을 가수 분해할 수 있는 해양 미생물 PX-1을 제주도 연안의 해수 로부터 순수하게 분리하였다. 16S rRNA 유전자 서열 및 생화학적 분류 결과에 기초하여, PX-1은 Aestuariibacter 속의 한 종으로 확인되어 Aestuariibacter sp. PX-1로 명명하였다. PX-1을 액체 배양한 배양액으로부터 암모늄 설페이트 침전법과 불용성 자일란을 이용한 흡착 크로마토그래피 방법을 이용하여, 세포 외로 분비된 자일라네이즈 후보 단백질을 순수하게 정제하였다. 정제한 후보 자일라네이즈 단백질(XylA)은 sodium dodecyl sulfate-polyacrylamide gel electrophoresis 및 겔여과 크로마토그래피 분석결과, 분자량이 대략 64 kDa인 것으로 추정되었다. XylA는 실제로 beechwood xylan 을 가수분해하는 자일라네이즈 활성을 보였으며, pH 6.0과 45℃에서 최대의 효소 활성을 나타냈다. XylA에 의한 자일란 가수 분해산물을 TLC로 분석한 결과, XylA 는 자일란을 자일로스와 자일로올리고당으로 분해하는 endo-type의 자일라네이즈임을 확인하였다. Beechwood xylan 에 대한 XylA의 Km 및 Vmax 값은 각각 27.78 mM (4.17 mg/ml), 78.13 μM/min이었다.

Keywords

References

  1. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  2. Uday US, Choudhury P, Bandyopadhyay TK, Bhunia B. 2015. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82: 1041-1054. https://doi.org/10.1016/j.ijbiomac.2015.10.086
  3. Wu H, Cheng X, Zhu Y, Zeng W, Chen G, Liang Z. 2018. Purification and characterization of a cellulase-free, thermostable endoxylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp. J. Biosci. Bioeng. 125: 46-51. https://doi.org/10.1016/j.jbiosc.2017.08.006
  4. Duarte ME, Zhou FX, Dutra WM Jr, Kim SW. 2019. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. 5: 351-358. https://doi.org/10.1016/j.aninu.2019.04.005
  5. Alokika, Singh B. 2019. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 103: 8763-8784. https://doi.org/10.1007/s00253-019-10108-6
  6. Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanase and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  7. Amaya-Delgado L, Mejia-Castillo T, Santiago-Hernandez A, Vega-Estrada J, Amelia FGS, Xoconostle-Cazares B, et al. 2010. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresour. Technol. 101: 5539-5545. https://doi.org/10.1016/j.biortech.2010.02.057
  8. Chi WJ, Park DY, Park JS, Hong SK. 2012. Isolation and characterization of a xylanolytic bacterium, Bacillus sp. MX47. Korean J. Microbiol. Biotechnol. 40: 419-423. https://doi.org/10.4014/kjmb.1207.07026
  9. Lo LC, Chu CY, Pan YR, Wan CF, Li YK, Lin JJ. 2006. Rapid and selective isolation of beta-xylosidase through an activity-based chemical approach. Biotechnol. J. 2: 197-202.
  10. Shahid S, Tajwar R, Akhtar MW. 2018. A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities. Extremophiles 22: 109-119. https://doi.org/10.1007/s00792-017-0981-8
  11. Lyman J, Fleming RH. 1940. Composition of seawater. J. Mar. Res. 3: 134-146.
  12. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  14. Chun JS, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. Extaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  15. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  16. Felsenstein J. 2009. PHYLIP (phylogeny inference package), v3.69. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, USA.
  17. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  18. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  19. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  20. Sasser M. 1997. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE:MIDI Inc.
  21. Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
  22. Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  24. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  25. Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  26. Wang Y, Wang H, Liu J, Lai Q, Shao Z, Austin B, et al. 2010. A. aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol. Lett. 309: 48-54.
  27. Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33: 152-155.
  28. Yi H, Bae KS, Chun J. 2004. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int. J. Syst. Evol. Microbiol. 54: 571-576. https://doi.org/10.1099/ijs.0.02798-0
  29. Tanaka N, Romanenko LA, Frolova GM, Mikhailov VV. 2010. Aestuariibacter litoralis sp. Nov., isolated from a sandy sediment of the Sea of Japan. Int. J. Syst. Evol. Microbiol. 60: 317-320. https://doi.org/10.1099/ijs.0.012435-0
  30. Jean WD, Hsu CY, Huang SP, Chen JS, Lin S, Su MH, Shieh WY. 2013. Reclassification of [Glaciecola] lipolytica and [Aestuariibacter] litoralis in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov., and Aliiglaciecola litoralis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 63: 2859-2864. https://doi.org/10.1099/ijs.0.045625-0
  31. Subramaniyan S, Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
  32. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW. 2006. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10: 295-300. https://doi.org/10.1007/s00792-005-0499-3
  33. Craig AD, Khattak F, Hastie P, Bedford MR, Olukosi OA. 2019. Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Br. Poult. Sci. 30: 1-9. https://doi.org/10.1080/00071668908417197

Cited by

  1. Draft Genome Sequence of Aestuariibacter halophilus Type Strain JC2043 vol.10, pp.50, 2020, https://doi.org/10.1128/mra.01093-21