DOI QR코드

DOI QR Code

Evaluation of the performance of encapsulated lifting system composting technology with a GORE(R) cover membrane: Physico-chemical properties and spectroscopic analysis

  • Al-Alawi, Mutaz (Department of Soil Science and Agricultural Chemistry, Institute of Environmental Science, Faculty of Agriculture and Environmental Sciences, Szent Istvan University) ;
  • El Fels, Loubna (Laboratory of Ecology and Environment (L2E) (Unit Associated with the CNRST, URAC32), Faculty of Science Semlalia, Cadi Ayyad University) ;
  • Benjreid, Ramadan (Department of Soil Science and Agricultural Chemistry, Institute of Environmental Science, Faculty of Agriculture and Environmental Sciences, Szent Istvan University) ;
  • Szegi, Tamas (Department of Soil Science and Agricultural Chemistry, Institute of Environmental Science, Faculty of Agriculture and Environmental Sciences, Szent Istvan University) ;
  • Hafidi, Mohamed (Laboratory of Ecology and Environment (L2E) (Unit Associated with the CNRST, URAC32), Faculty of Science Semlalia, Cadi Ayyad University) ;
  • Simon, Barbara (Department of Soil Science and Agricultural Chemistry, Institute of Environmental Science, Faculty of Agriculture and Environmental Sciences, Szent Istvan University) ;
  • Gulyas, Miklos (Department of Soil Science and Agricultural Chemistry, Institute of Environmental Science, Faculty of Agriculture and Environmental Sciences, Szent Istvan University)
  • Received : 2019.02.14
  • Accepted : 2019.04.29
  • Published : 2020.06.30

Abstract

Composting is among the most effective integrated waste management strategies used to recycle sewage sludge (SS) waste and generate a useful product. An encapsulated lifting system is a relatively new industrial-scale composting technology. The objective of this study was to evaluate the effectiveness of composting dewatered stabilized SS mixed with green waste using this new technology. The composting process was monitored by changes in the physico-chemical properties, UV-visible spectra, and fourier transform infrared (FTIR) spectra. The composting temperature was steady in the thermophilic range for 24 and 12 d in the intensive and maturation phases, respectively, which fulfilled the disinfection requirement. Moreover, the temperature increased rapidly to 76.8℃ within three days, and the thermophilic temperatures peaked twice and lasted longer than in traditional composting, which accelerated SS degradation and decreased the composting period necessary to obtain mature compost. FTIR spectroscopic analysis showed a diminished in methyl group derived from methylene C-H aliphatic groups because of organic matter degradation by microorganisms and an increased number of aromatic chains. The new technology may be a viable and sustainable alternative for SS management that converts waste into compost that is useful as a soil amendment.

Keywords

References

  1. Banegas V, Moreno JL, Moreno JI, Garcia C, Leon G, Hernandez T. Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manage. 2007;27:1317-1327. https://doi.org/10.1016/j.wasman.2006.09.008
  2. Neyens E. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 2004;106:83-92. https://doi.org/10.1016/j.jhazmat.2003.11.014
  3. Leonard A. Management of wastewater sludge's: A hot topic at the European level. J. Environ. Stud. 2011;8:38.
  4. Senesi N, Plaza C, Brunetti G, Polo A. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol. Biochem. 2007;39:1244-1262. https://doi.org/10.1016/j.soilbio.2006.12.002
  5. Cesaro A, Belgiorno V, Guida M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015;94:72-79. https://doi.org/10.1016/j.resconrec.2014.11.003
  6. Zhou Y, Selvam A, Wong JWC. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour. Technol. 2018;249:182-188. https://doi.org/10.1016/j.biortech.2017.09.212
  7. Lim LY, Bong CPC, Lee CT, Klemes JJ, Sarmidi MR, Lim JS. Review on the current composting practices and the potential of improvement using two-stage composting. Chem. Eng. Trans. 2017;61:1051-1056.
  8. Kulikowska D, Klimiuk E. Organic matter transformations and kinetics during sewage sludge composting in a two-stage system. Bioresour. Technol. 2011;102:10951-10958. https://doi.org/10.1016/j.biortech.2011.09.009
  9. Zhang L, Sun X, Tian Y, Gong X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour. Technol. 2013;131:68-75. https://doi.org/10.1016/j.biortech.2012.10.059
  10. Khalil A, Domeizel M, Prudent P. Monitoring of green waste composting process based on redox potential. Bioresour. Technol. 2008;99:6037-6045. https://doi.org/10.1016/j.biortech.2007.11.043
  11. Gonzalez I, Robledo-Mahon T, Silva-Castro GA, et al. Evolution of the composting process with semi-permeable film technology at industrial scale. J. CLEAN Prod. 2016;115:245-254. https://doi.org/10.1016/j.jclepro.2015.12.033
  12. Robledo-Mahon T, Aranda E, Pesciaroli C, et al. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting. J. Environ. Manage. 2018;215:57-67. https://doi.org/10.1016/j.jenvman.2018.03.041
  13. Ma S, Fang C, Sun X, Han L, He X, Huang G. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure. Bioresour. Technol. 2018;259:221-227. https://doi.org/10.1016/j.biortech.2018.03.054
  14. Ma S, Sun X, Fang C, He X, Han L, Huang G. Exploring the mechanisms of decreased methane during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane. Waste Manage. 2018;78:393-400. https://doi.org/10.1016/j.wasman.2018.06.005
  15. Sun X, Ma S, Han L, et al. The effect of a semi-permeable membrane-covered composting system on greenhouse gas and ammonia emissions in the Tibetan Plateau. J. CLEAN Prod. 2018;204:778-787. https://doi.org/10.1016/j.jclepro.2018.09.061
  16. Mukhopadhyay A, Midha VK. A review on designing the waterproof breathable fabrics. Part II: Construction and suitability of breathable fabrics for different uses. J. Ind. Text. 2008;38:17-41. https://doi.org/10.1177/1528083707082166
  17. TMECC. Test methods for the examination of composting and compost. Thompson WH, Leege PB, Millner PD, Watson ME, eds. The United States Composting Council Research and Education Foundation. The United States Department of Agriculture; 2002.
  18. Guo R, Li G, Jiang T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012;112:171-178. https://doi.org/10.1016/j.biortech.2012.02.099
  19. Paredes C, Roig A, Bernal MP, Sanchez-Monedero MA, Cegarra J. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol. Fertil. Soil. 2000;32:222-227. https://doi.org/10.1007/s003740000239
  20. Harada Y, Inoko A. Relationship between cation-exchange capacity and degree of maturity of city refuse composts. Soil Sci. Plant Nutr. 1980;26:353-362. https://doi.org/10.1080/00380768.1980.10431220
  21. Okalebo JR, Gathua KW, Woomer PL. Laboratory methods of soil and plant analysis: A working manual. 2nd ed. Nairobi, Kenya: Sacred African Publishers; 2002.
  22. Zbytniewski R, Buszewski B. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: Chemical and spectroscopic properties. Bioresour. Technol. 2005;96:471-478. https://doi.org/10.1016/j.biortech.2004.05.018
  23. Amir S, Hafidi M, Merlina G, Revel J-C. Structural characterization of fulvic acids during composting of sewage sludge. Process Biochem. 2005;40:1693-1700. https://doi.org/10.1016/j.procbio.2004.06.037
  24. El Fels L, Zamama M, El Asli A, Hafidi M. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int. Biodeterior. Biodegrad. 2014;87: 128-137. https://doi.org/10.1016/j.ibiod.2013.09.024
  25. Insam H, Franke-Whittle I, Goberna M. Microbes in aerobic and anaerobic waste treatment. In: Microbes at work. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010;353:1-34.
  26. Zhang L, Sun X. Effects of bean dregs and crab shell powder additives on the composting of green waste. Bioresour. Technol. 2018;260:283-293. https://doi.org/10.1016/j.biortech.2018.03.126
  27. Zhang L, Sun X. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting. Bioresour. Technol. 2018;267:182-191. https://doi.org/10.1016/j.biortech.2018.07.040
  28. Zhang L, Sun X. Evaluation of maifanite and silage as amendments for green waste composting. Waste Manage. 2018;77: 435-446. https://doi.org/10.1016/j.wasman.2018.04.028
  29. Tonner-Klank L, Moller J, Forslund A, Dalsgaard A. Microbiological assessments of compost toilets: In situ measurements and laboratory studies on the survival of fecal microbial indicators using sentinel chambers. Waste Manage. 2007;27: 1144-1154. https://doi.org/10.1016/j.wasman.2006.04.021
  30. de Bertoldi M, Vallini G, Pera A. The biology of composting: A review. Waste Manage. Res. 1983;1:157-176. https://doi.org/10.1177/0734242X8300100118
  31. El Hayany B, El Glaoui GEM, Rihanni M, et al. Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate. Environ. Sci. Pollut. Res. 2018;25:10988-10996. https://doi.org/10.1007/s11356-017-1066-z
  32. Huang GF, Wong JWC, Wu QT, Nagar BB. Effect of C/N on composting of pig manure with sawdust. Waste Manage. 2004;24:805-813. https://doi.org/10.1016/j.wasman.2004.03.011
  33. Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresour. Technol. 2000;74:125-133. https://doi.org/10.1016/S0960-8524(00)00005-5
  34. Caceres R, Malinska K, Marfa O. Nitrification within composting: A review. Waste Manage. 2018;72:119-137. https://doi.org/10.1016/j.wasman.2017.10.049
  35. Barrington S, Choiniere D, Maher T, Knight W. Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 2002;83:189-194. https://doi.org/10.1016/S0960-8524(01)00229-2
  36. Vergnoux A, Guiliano M, Le Dreau Y, Kister J, Dupuy N, Doumenq P. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy. Sci. Total Environ. 2009;407:2390-2403. https://doi.org/10.1016/j.scitotenv.2008.12.033
  37. Baeta-Hall L, Ceu Saagua M, Lourdes Bartolomeu M, Anselmo AM, Fernanda Rosa M. Bio-degradation of olive oil husks in composting aerated piles. Bioresour. Technol. 2005;96:69-78. https://doi.org/10.1016/j.biortech.2003.06.007
  38. Hachicha S, Sallemi F, Medhioub K, Hachicha R, Ammar E. Quality assessment of composts prepared with olive mill wastewater and agricultural wastes. Waste Manage. 2008;28:2593-2603. https://doi.org/10.1016/j.wasman.2007.12.007
  39. Zenjari B, El Hajjouji H, Ait Baddi G, et al. Eliminating toxic compounds by composting olive mill wastewater-straw mixtures. J. Hazard. Mater. 2006;138:433-437. https://doi.org/10.1016/j.jhazmat.2006.05.071
  40. Michailides M, Christou G, Akratos CS, Tekerlekopoulou AG, Vayenas DV. Composting of olive leaves and pomace from a three-phase olive mill plant. Int. Biodeterior. Biodegrad. 2011;65:560-564. https://doi.org/10.1016/j.ibiod.2011.02.007
  41. Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami Alami I. Composting parameters and compost quality: A literature review. Org. Agric. 2018;8:141-158. https://doi.org/10.1007/s13165-017-0180-z
  42. Caceres R, Flotats X, Marfa O. Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different aeration strategies. Waste Manage. 2006;26:1081-1091. https://doi.org/10.1016/j.wasman.2005.06.013
  43. Zhang D, Luo W, Li Y, Wang G, Li G. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour. Technol. 2018;250:853-859. https://doi.org/10.1016/j.biortech.2017.08.136
  44. Singh WR, Kalamdhad AS. Potential for composting of green phumdi biomass of Loktak lake. Ecol. Eng. 2014;67:119-126. https://doi.org/10.1016/j.ecoleng.2014.03.086
  45. Khan MAI, Ueno K, Horimoto S, Komai F, Tanaka K, Ono Y. Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran. Biol. Fertil. Soil. 2009;45:305-313. https://doi.org/10.1007/s00374-008-0335-x
  46. Bernal MP, Sommer SG, Chadwick D, Qing C, Guoxue L, Michel FC. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. In: Advances in agronomy. 2017;144:143-233. https://doi.org/10.1016/bs.agron.2017.03.002
  47. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009;100:5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027
  48. Raj D, Antil RS. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011;102:2868-2873. https://doi.org/10.1016/j.biortech.2010.10.077
  49. Meng L, Li W, Zhang S, Wu C, Lv L. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresour. Technol. 2017;226:39-45. https://doi.org/10.1016/j.biortech.2016.11.054
  50. Tognetti C, Mazzarino MJ, Laos F. Improving the quality of municipal organic waste compost. Bioresour. Technol. 2007;98:1067-1076. https://doi.org/10.1016/j.biortech.2006.04.025
  51. Rihani M, Malamis D, Bihaoui B, Etahiri S, Loizidou M, Assobhei O. In-vessel treatment of urban primary sludge by aerobic composting. Bioresour. Technol. 2010;101:5988-5995. https://doi.org/10.1016/j.biortech.2010.03.007
  52. Chefetz B, Hatcher PG, Hadar Y, Chen Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 1996;25:776-785. https://doi.org/10.2134/jeq1996.00472425002500040018x
  53. Provenzano MR, de Oliveira SC, Santiago Silva MR, Senesi N. Assessment of maturity degree of composts from domestic solid wastes by fluorescence and fourier transform infrared spectroscopies. J. Agric. Food Chem. 2001;49:5874-5879. https://doi.org/10.1021/jf0106796
  54. Tomati U, Belardinelli M, Andreu M, et al. Evaluation of commercial compost quality. Waste Manage. Res. 2002;20:389-397. https://doi.org/10.1177/0734242X0202000502
  55. Lahsaini S, Aguelmous A, El Fels L, et al. Assessment of biotransformation of sludge from vegetable oil refining by composting. Compost Sci. Util. 2017;25:130-140. https://doi.org/10.1080/1065657X.2016.1245639
  56. Garcia C, Hernandez T, Costa F. Characterization of humic acids from uncomposted and composted sewage sludge by degradative and non-degradative techniques. Bioresour. Technol. 1992;41:53-57. https://doi.org/10.1016/0960-8524(92)90098-I
  57. Jouraiphy A, Amir S, El Gharous M, Revel J-C, Hafidi M. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int. Biodeterior. Biodegrad. 2005;56:101-108. https://doi.org/10.1016/j.ibiod.2005.06.002
  58. Hao X, Chang C. Gaseous NO, $NO_2$, $NH_3$ loss during cattle feedlot manure composting. Phyton 2001;41:81-94.
  59. Roig A, Lax A, Cegarra J, Costa F, Hernandez MT. Cation exchange capacity as a parameter for measuring the humification degree of manures. Soil Sci. 1988;146:311-316. https://doi.org/10.1097/00010694-198811000-00003
  60. Zhang L, Sun X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014;171:274-284. https://doi.org/10.1016/j.biortech.2014.08.079
  61. Lax A, Roig A, Costa F. A method for determining the cation-exchange capacity of organic materials. Plant Soil 1986;94:349-355. https://doi.org/10.1007/BF02374329
  62. Joseph SD, Camps-Arbestain M, Lin Y, et al. An investigation into the reactions of biochar in soil. Soil Res. 2010;48:501-515. https://doi.org/10.1071/SR10009
  63. Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977;41:352-358. https://doi.org/10.2136/sssaj1977.03615995004100020037x
  64. Guo X, Huang J, Lu Y, Shan G, Li Q. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud. Bioresour. Technol. 2016;219: 169-174. https://doi.org/10.1016/j.biortech.2016.07.125
  65. Chen Y. Nuclear magnetic resonance, infra-red and pyrolysis: Application of spectroscopic methodologies to maturity determination of composts. Compost Sci. Util. 2003;11:152-168. https://doi.org/10.1080/1065657X.2003.10702121
  66. El Mezouari El Glauoi G, El Hayany B, El Fels L, et al. Physico-chemical and spectroscopy assessment of sludge biodegradation during semi-industrial composting under semi-arid climate. Waste Biomass Valori. 2018:1-12.
  67. El Fels L, Zamama M, Hafidi M. Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. In: Chamy R, Rosenkranz F, Soler L, eds. Biodegradation and bioremediation of polluted systems - New advances and technologies. InTech; 2015. p.127-144.
  68. Lü F, Shao L-M, Zhang H, et al. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A mini review. Bioresour. Technol. 2018;248:122-133. https://doi.org/10.1016/j.biortech.2017.06.045
  69. Wu H, Zhao Y, Long Y, Zhu Y, Wang H, Lu W. Evaluation of the biological stability of waste during landfill stabilization by thermogravimetric analysis and Fourier transform infrared spectroscopy. Bioresour. Technol. 2011;102:9403-9408. https://doi.org/10.1016/j.biortech.2011.07.029
  70. Kaiser M, Ellerbrock RH. Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment. Geoderma 2005;127:196-206. https://doi.org/10.1016/j.geoderma.2004.12.002
  71. Maquelin K, Kirschner C, Choo-Smith L-P, et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Meth. 2002;51:255-271. https://doi.org/10.1016/S0167-7012(02)00127-6
  72. Pajaczkowska J, Sulkowska A, Sulkowski WW, Jedrzejczyk M. Spectroscopic study of the humification process during sewage sludge treatment. J. Mol. Struct. 2003;651-653:141-149. https://doi.org/10.1016/S0022-2860(03)00103-0
  73. Smidt E, Eckhardt K, Lechner P, Schulten H, Leinweber P. Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodegradation 2005;16:67-79. https://doi.org/10.1007/s10531-004-0430-8
  74. Droussi Z, D'orazio V, Provenzano MR, Hafidi M, Ouatmane A. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 2009;164:1281-1285. https://doi.org/10.1016/j.jhazmat.2008.09.081
  75. Zhou Y, Selvam A, Wong JWC. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresour. Technol. 2014;168:229-234. https://doi.org/10.1016/j.biortech.2014.05.070
  76. Bower DI, Maddams WF. The vibrational spectroscopy of polymers. Cambridge: Cambridge Univ. Press; 1989.
  77. Ouatmane A, Provenzano MR, Hafidi M, Senesi N. Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci. Util. 2000;8:124-134. https://doi.org/10.1080/1065657X.2000.10701758
  78. Filip Z, Bielek P. Susceptibility of humic acids from soils with various contents of metals to microbial utilization and transformation. Biol. Fertil. Soil. 2002;36:426-433. https://doi.org/10.1007/s00374-002-0559-0
  79. Smidt E, Lechner P, Schwanninger M, Haberhauer G, Gerzabek MH. Characterization of waste organic matter by FT-IR spectroscopy: Application in waste science. Appl. Spectrosc. 2002;56: 1170-1175. https://doi.org/10.1366/000370202760295412
  80. Aguelmous A, Lahsaini S, El Fels L, Souabi S, Zamama M, Hafidi M. Assessment of organo-mineral fraction during storage of oil refinery sludge. Moroccan J. Chem. 2016;4:1029-1036.
  81. Reig FB, Adelantado JVG, Moya Moreno MCM. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 2002;58:811-821. https://doi.org/10.1016/S0039-9140(02)00372-7