DOI QR코드

DOI QR Code

Experimental study of degradation and biodegradability of oxytetracycline antibiotic in aqueous solution using Fenton process

  • Zouanti, Mustapha (VSN Laboratory, Faculty of Science and Technology, University of Djilali Bounaama) ;
  • Bezzina, Mohamed (VSN Laboratory, Faculty of Science and Technology, University of Djilali Bounaama) ;
  • Dhib, Ramdhane (Department of Chemical Engineering, Ryerson University)
  • Received : 2018.09.28
  • Accepted : 2019.05.08
  • Published : 2020.06.30

Abstract

The degradation of aqueous oxytetracycline (OTC) from an aqueous solution antibiotic using H2O2/Fe2+ process was studied in one 1 L batch chemical reactor. The extent of OTC degradation (20 mg/L) was investigated from a known initial pH solution, temperature and the type of catalyst (Fe2+, Fe3+) and for various initial concentrations of OTC, H2O2 and Fe2+. The degradation efficiency achieved was found to be very important (90.82% and 90.63%) at initial pH solution of 3 and 4, respectively. However, the type of catalyst and the reaction temperature had a slight impact on the final degradation of OTC. The results showed that the OTC removal increased with increasing initial H2O2 concentration in the range of 70 to 150 mg/L and initial Fe2+ concentrations in the range of 2 to 5 mg/L. The highest degradation efficiency obtained at ambient temperature was 90.95% with initial concentration of OTC of 10 mg/L, H2O2 = 150 mg/L and Fe2+ = 5 mg/L. Moreover, biodegradability improved from 0.04 to 0.36 and chemical oxygen demand degradation was 78.35% after 60 min of treatment. This study proved that Fenton process can be used for pretreatment of wastewater contaminated by OTC before a biological treatment.

Keywords

References

  1. Khetan SK, Collins TJ. Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chem. Rev. 2007;107:2319-2364. https://doi.org/10.1021/cr020441w
  2. Lillenberg M, Yurchenko S, Kipper K, et al. Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting. Int. J. Environ. Sci. Technol. 2010;7:307-312. https://doi.org/10.1007/BF03326140
  3. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009;35:402-417. https://doi.org/10.1016/j.envint.2008.07.009
  4. Laera G, Cassano D, Lopez A, et al. Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/$H_2O_2$ treatment. Environ. Sci. Technol. 2011;46:1010-1018.
  5. Gupta SK, Gupta SK, Hung Y-T. Treatment of pharmaceutical wastes. In: Wang LK, Hung YT, Howard HL, Yapijakis C, eds. Waste treatment in the process industries. CRC Taylor and Francis; 2006. p. 167-233.
  6. Schroder HF. Substance-specific detection and pursuit of non-eliminable compounds during biological treatment of waste water from the pharmaceutical industry. Waste Manage. 1999;19:111-123. https://doi.org/10.1016/S0956-053X(99)00002-1
  7. Sreekanth D, Sivaramakrishna D, Himabindu V, Anjaneyulu Y. Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour. Technol. 2009;100:2534-2539. https://doi.org/10.1016/j.biortech.2008.11.028
  8. Figueroa RA, Leonard A, MacKay AA. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 2004;38:476-483. https://doi.org/10.1021/es0342087
  9. Lopez‐Penalver JJ, Sánchez‐Polo M, Gomez‐Pacheco CV, Rivera-Utrilla J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/$H_2O_2$ oxidation processes. J. Chem. Technol. Biotechnol. 2010;85:1325-1333. https://doi.org/10.1002/jctb.2435
  10. Palominos RA, Mondaca MA, Giraldo A, Peñuela G, Perez-Moya M, Mansilla HD. Photocatalytic oxidation of the antibiotic tetracycline on $TiO_2$ and ZnO suspensions. Catal. Today 2009;144:100-105. https://doi.org/10.1016/j.cattod.2008.12.031
  11. Lopez Penalver JJ, Gomez Pacheco CV, Sánchez Polo M, Rivera Utrilla J. Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. J. Chem. Technol. Biotechnol. 2013;88:1096-1108. https://doi.org/10.1002/jctb.3946
  12. Kolar B, Arnus L, Jeretin B, Gutmaher A, Drobne D, Durjava MK. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 2014;115:75-80. https://doi.org/10.1016/j.chemosphere.2014.02.049
  13. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013;228:944-964. https://doi.org/10.1016/j.cej.2013.05.061
  14. Mboula VM, Hequet V, Gru Y, Colin R, Andres Y. Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J. Hazard. Mater. 2012;209:355-364. https://doi.org/10.1016/j.jhazmat.2012.01.032
  15. Oller I, Malato S, Sanchez-Perez J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Sci. Total Environ. 2011;409:4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
  16. Hamad D, Mehrvar M, Dhib R. Experimental study of polyvinyl alcohol degradation in aqueous solution by UV/$H_2O_2$ process. Polym. Degrad. Stab. 2014;103:75-82. https://doi.org/10.1016/j.polymdegradstab.2014.02.018
  17. Maleki A, Mahvi A, Mesdaghinia A, Naddafi K. Degradation and toxicity reduction of phenol by ultrasound waves. Bull. Chem. Soc. Ethiop. 2007;21:33-38.
  18. Stock NL, Peller J, Vinodgopal K, Kamat PV. Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 2000;34:1747-1750. https://doi.org/10.1021/es991231c
  19. Low FCF, Wu TY, Teh CY, Juan JC, Balasubramanian N. Investigation into photocatalytic decolorisation of CI Reactive Black 5 using titanium dioxide nanopowder. Color. Technol. 2012;128:44-50. https://doi.org/10.1111/j.1478-4408.2011.00326.x
  20. He X, Mezyk SP, Michael I, Fatta-Kassinos D, Dionysiou DD. Degradation kinetics and mechanism of $\beta$-lactam antibiotics by the activation of $H_2O_2$ and $Na_2S_2O_8$ under UV-254 nm irradiation. J. Hazard. Mater. 2014;279:375-383. https://doi.org/10.1016/j.jhazmat.2014.07.008
  21. Liu Y, He X, Fu Y, Dionysiou DD. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chem. Eng. J. 2016;284:1317-1327. https://doi.org/10.1016/j.cej.2015.09.034
  22. Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J. Photodegradation and toxicity changes of antibiotics in UV and UV/$H_2O_2$ process. J. Hazard. Mater. 2011;185:1256-1263. https://doi.org/10.1016/j.jhazmat.2010.10.040
  23. Pereira JH, Queiros DB, Reis AC, et al. Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: Application to oxytetracycline degradation. Chem. Eng. J. 2014;253:217-228. https://doi.org/10.1016/j.cej.2014.05.037
  24. Fernandes A, Oliveira C, Pacheco MJ, Ciríaco L, Lopes A. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism. J. Electrochem. Sci. Eng. 2014;4:203-213.
  25. Jeong J, Song W, Cooper WJ, Jung J, Greaves J. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 2010;78:533-540. https://doi.org/10.1016/j.chemosphere.2009.11.024
  26. Li K, Yediler A, Yang M, Schulte-Hostede S, Wong MH. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere 2008;72:473-478. https://doi.org/10.1016/j.chemosphere.2008.02.008
  27. Pereira JH, Vilar VJ, Borges MT, Gonzalez O, Esplugas S, Boaventura RA. Photocatalytic degradation of oxytetracycline using $TiO_2$ under natural and simulated solar radiation. Sol. Energy 2011;85:2732-2740. https://doi.org/10.1016/j.solener.2011.08.012
  28. Thomas O, Mazas N. La mesure de la demande chimique en oxygene dans les milieux faiblement pollues. Analusis 1986;14:300-302.
  29. Elmolla E, Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. J. Hazard. Mater. 2009;170:666-672. https://doi.org/10.1016/j.jhazmat.2009.05.013
  30. Subramonian W, Wu TY, Chai S-P. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic $Fe_2O_3$-$TiO_2$: Treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 2017;187:298-310. https://doi.org/10.1016/j.jenvman.2016.10.024
  31. Mansour D, Fourcade F, Bellakhal N, Dachraoui M, Hauchard D, Amrane A. Biodegradability improvement of sulfamethazine solutions by means of an electro-Fenton process. Water Air Soil Pollut. 2012;223:2023-2034. https://doi.org/10.1007/s11270-011-1002-7
  32. Perez M, Torrades F, Domenech X, Peral J. Fenton and photo-Fenton oxidation of textile effluents. Water Res. 2002;36:2703-2710. https://doi.org/10.1016/S0043-1354(01)00506-1
  33. Chekir N, Laoufi NA, Bentahar F. Spiramycin photocatalysis under artificial UV radiation and natural sunlight. Desalin. Water Treat. 2014;52:6832-6839. https://doi.org/10.1080/19443994.2013.821632
  34. Hoseini M, Safari GH, Kamani H, Jaafari J, Ghanbarain M, Mahvi AH. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis. Toxicol. Environ. Chem. 2013;95:1680-1689. https://doi.org/10.1080/02772248.2014.901328
  35. Ramirez JH, Costa CA, Madeira LM. Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catal. Today 2005;107:68-76. https://doi.org/10.1016/j.cattod.2005.07.060
  36. Aygun A, Yilmaz T, Nas B, Berktay A. Effect of temperature on Fenton oxidation of young landfill leachate: Kinetic assessment and sludge properties. Global Nest J. 2012;14:487-495. https://doi.org/10.30955/gnj.000835
  37. Karatas M, Argun YA, Argun ME. Decolorization of antraquinonic dye, Reactive Blue 114 from synthetic wastewater by Fenton process: Kinetics and thermodynamics. J. Ind. Eng. Chem. 2012;18:1058-1062. https://doi.org/10.1016/j.jiec.2011.12.007
  38. Lucas MS, Peres JA. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 2006;71:236-244. https://doi.org/10.1016/j.dyepig.2005.07.007
  39. Kwon BG, Lee DS, Kang N, Yoon J. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Res. 1999;33:2110-2118. https://doi.org/10.1016/S0043-1354(98)00428-X
  40. Wang S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 2008;76:714-720. https://doi.org/10.1016/j.dyepig.2007.01.012
  41. Tekin H, Bilkay O, Ataberk SS, et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. 2006;136:258-265. https://doi.org/10.1016/j.jhazmat.2005.12.012

Cited by

  1. A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes vol.11, pp.7, 2020, https://doi.org/10.3390/catal11070782
  2. Degradation of Oxytetracycline by Persulfate Activation Using a Magnetic Separable Iron Oxide Catalyst Derived from Hand-Warmer Waste vol.11, pp.21, 2020, https://doi.org/10.3390/app112110447
  3. NH2-Fe-MILs for effective adsorption and Fenton-like degradation of imidacloprid: Removal performance and mechanism investigation vol.27, pp.2, 2020, https://doi.org/10.4491/eer.2020.702