DOI QR코드

DOI QR Code

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan (Department of Mechatronics and Sensor Systems Technology, Vietnamese German University) ;
  • Luu, Tran Le (Department of Mechatronics and Sensor Systems Technology, Vietnamese German University)
  • 투고 : 2018.10.01
  • 심사 : 2019.05.08
  • 발행 : 2020.06.30

초록

Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

키워드

참고문헌

  1. Dinh HT. Light manufacturing in Vietnam: Creating jobs and prosperity in a middle-income economy. Washington D.C.: The World Bank; 2013. p. 1-89.
  2. Lofrano G, Meric S, Zengin G, Orhon D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total Environ. 2013;461:265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004
  3. Deghles A, Kurt U. Treatment of raw tannery wastewater by electrocoagulation technique: Optimization of effective parameters using Taguchi method. Desal. Water Treat. 2016;57:14798-14809. https://doi.org/10.1080/19443994.2015.1074622
  4. Benhadji A, Ahmed MT, Maachi R. Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouiba. Desalination 2011;277:128-134. https://doi.org/10.1016/j.desal.2011.04.014
  5. Song Z, Williams C, Edyvean R. Treatment of tannery wastewater by chemical coagulation. Desalination 2004;164:249-259. https://doi.org/10.1016/S0011-9164(04)00193-6
  6. Sengil IA, Kula S, Ozacar M. Treatment of tannery liming drum wastewater by electrocoagulation. J. Hazard. Mater. 2009;167:940-946. https://doi.org/10.1016/j.jhazmat.2009.01.099
  7. Elabbas S, Ouazzani N, Mandi L, et al. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. J. Hazard. Mater. 2016;319:69-77. https://doi.org/10.1016/j.jhazmat.2015.12.067
  8. Suganthi V, Mahalakshmi M, Balasubramanian N. Development of hybrid membrane bioreactor for tannery effluent treatment. Desalination 2013;309:231-236. https://doi.org/10.1016/j.desal.2012.10.014
  9. Durai G, Rajasimman M, Rajamohan N. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains. Water Sci. Technol. 2011;1:35-40.
  10. Ganesh R, Sousbie P, Torrijos M, Bernet N, Ramanujam RA. Nitrification and denitrification characteristics in a sequencing batch reactor treating tannery wastewater. CLEAN Technol. Environ. 2015;17:735-745. https://doi.org/10.1007/s10098-014-0829-1
  11. Kargi F, Dincer AR. Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ. Res. 2000;72:170-174. https://doi.org/10.2175/106143000X137248
  12. Belkin S, Brenner A, Abeliovich A. Biological treatment of high salinity chemical industrial wastewater. Water Sci. Technol. 1993;27:105-112.
  13. Woolard CR, Irvine CR. Treatment of hypersaline wastewater in sequencing batch reactor. Water Res. 1995;29:1159-1168. https://doi.org/10.1016/0043-1354(94)00239-4
  14. Kargi F, Dincer AR. Biological treatment of saline wastewater by bed batch operation. J. Chem. Technol. Biotechnol. 1997;69:167-172. https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<167::AID-JCTB696>3.0.CO;2-C
  15. Gregory K, Mingquan Y. Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review. Environ. Eng. Res. 2018;23:345-353. https://doi.org/10.4491/eer.2018.054
  16. Khalid H, Rafid K, Nisreen J, et al. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019;210:135-144. https://doi.org/10.1016/j.seppur.2018.07.056
  17. Sire's I, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012;40:212-229. https://doi.org/10.1016/j.envint.2011.07.012
  18. Peralta-Hernandez JM, Martinez-Huitle CA, Guzman-Mar JL, Ramirez AH. Recent advances in the application of electro-Fenton and photoelectro-Fenton process for removal of synthetic dyes in wastewater treatment. J. Environ. Eng. Manage. 2009;19:257-265.
  19. Luu TL, Kim C, Kim S, Jiye K, Yoon J. Three dimensional macroporous $RuO_2-TiO_2$ electrode for chlorine evolution. Desal. Water Treat. 2017;77:94-104. https://doi.org/10.5004/dwt.2017.20670
  20. Luu TL, Kim J, Yoon J. Facile chemical bath deposition to fabricate $RuO_{2}$ electrodes for electrochemical chlorine evolution. Desal. Water Treat. 2017;99:204-210. https://doi.org/10.5004/dwt.2017.21662
  21. Zhou M, Liu L, Jiao Y, Wang Q, Tan Q. Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes. Desalination 2011;277:201-206. https://doi.org/10.1016/j.desal.2011.04.030
  22. Ramjaun SN, Wang Z, Yuan R, Liu J. Can electrochemical oxidation techniques really decontaminate saline dyes wastewater? J. Environ. Chem. Eng. 2015;3:1648-1653. https://doi.org/10.1016/j.jece.2015.06.006
  23. Chen G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004;38:11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  24. Luu TL, Kim J, Yoon J. Microwave assisted synthesis of $RuO_2-TiO_2$ electrodes for chlorine evolutions. Desal. Water Treat. 2017;77:105-111. https://doi.org/10.5004/dwt.2017.20671
  25. APHA-AWWA-WPCF. Standard methods for the examination of water and wastewater. 17th ed. Washington D.C.; American Public Health Association; 1989.
  26. Comminellis C, Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 1995;25:23-28. https://doi.org/10.1007/BF00251260
  27. Martínez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006;35:1324-1340. https://doi.org/10.1039/B517632H
  28. Panizza M, Cerisola G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environ. Sci. Technol. 2004;38:5470-5475. https://doi.org/10.1021/es049730n
  29. Kongjao S, Damronglerd S, Hunsom M. Simultaneous removal of chromium and organic pollutants in tannery wastewater by electroprecipitation technique. Korean J. Chem. Eng. 2007;24:730-735. https://doi.org/10.1007/s11814-007-0034-6
  30. Szpyrkowicz L, Cherbanski R, Kelsall GH. Hydrodynamic effects on the performance of an electrochemical reactor for destruction of disperse dyes. Ind. Eng. Chem. Res. 2005;44:2058-2068. https://doi.org/10.1021/ie049444k
  31. Szpyrkowic L, Kaul S, Neti RN. Tannery wastewater treatment by electro-oxidation coupled with a biological process. J. Appl. Electrochem. 2005;35:381-390. https://doi.org/10.1007/s10800-005-0796-7
  32. Chavez EI, Rosaa C, Godinez LA, Brillas E, Hernandez J. Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J. Electroanal. Chem. 2013;173:62-69.
  33. Costa CR, Botta CMR, Espindola E, Olivi P. Electrochemical treatment of tannery wastewater using DSA(R) electrodes. J. Hazard. Mater. 2008;153:616-627. https://doi.org/10.1016/j.jhazmat.2007.09.005
  34. Costa CR, Olivi P. Effect of chloride concentration on the electrochemical treatment of a synthetic tannery wastewater. Electrochim. Acta 2009;54:2046-2062. https://doi.org/10.1016/j.electacta.2008.08.033
  35. Randazzoa S, Scialdone O, Brillas E, Sires I. Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. J. Hazard. Mater. 2011;192:1555-1564. https://doi.org/10.1016/j.jhazmat.2011.06.075
  36. Kapalka A. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 2008;38:7-16. https://doi.org/10.1007/s10800-007-9365-6
  37. Chang M, Gao C, Jiang J. Electrochemical oxidation of organic compounds using boron-doped diamond electrode. J. Electrochem. Soc. 2009;156:E50-E54. https://doi.org/10.1149/1.3042220
  38. Mandal P, Dubey BK, Gupta AK. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope. Waste Manage. 2017;69:250-273. https://doi.org/10.1016/j.wasman.2017.08.034
  39. Chiang L, Chang J, Wen T. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 1995;29:671-678. https://doi.org/10.1016/0043-1354(94)00146-X
  40. Gendel Y, Lahav O. Revealing the mechanism of indirect ammonia electrooxidation. Electrochim. Acta 2012;63:209-219. https://doi.org/10.1016/j.electacta.2011.12.092
  41. Zhou B, Yu Z, Wei Q, Long H, Xie Y, Wang Y. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Appl. Surf. Sci. 2016;377:406-415. https://doi.org/10.1016/j.apsusc.2016.03.045
  42. Min K, Yu J, Kim Y, Yun Z. Removal of ammonium from tannery wastewater by electrochemical treatment. J. Environ. Sci. Health A. 2006;39:1867-1897.
  43. Anglada A, Urtiaga A, Ortiz I. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J. Hazard. Mater. 2010;181:729-735. https://doi.org/10.1016/j.jhazmat.2010.05.073
  44. Urtiaga A, Rueda A, Anglada A, Ortiz I. Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J. Hazard. Mater. 2009;166:1530-1534. https://doi.org/10.1016/j.jhazmat.2008.11.037
  45. Costa CR, Montilla F, Morallon E, Olivia P. Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. J. Hazard. Mater. 2010;180:429-435. https://doi.org/10.1016/j.jhazmat.2010.04.048
  46. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res. 2005;39:1601-1613. https://doi.org/10.1016/j.watres.2005.01.016

피인용 문헌

  1. Removal of Nutrients From Anaerobically Digested Swine Wastewater Using an Intermittent Cycle Extended Aeration System vol.11, 2020, https://doi.org/10.3389/fmicb.2020.576438
  2. Optimizing RuOx−TiO2 composite anodes for enhanced durability in electrochemical water treatments vol.265, 2020, https://doi.org/10.1016/j.chemosphere.2020.129166
  3. Treatment of tannery effluent by chemical coagulation combined with batch-recirculated electro-oxidation at different anode materials vol.28, pp.19, 2021, https://doi.org/10.1007/s11356-021-12436-5
  4. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater vol.26, pp.11, 2020, https://doi.org/10.3390/molecules26113222
  5. Continuous flow sequencing bed biofilm reactor bio-digested landfill leachate treatment using electrocoagulation-persulfate vol.297, 2021, https://doi.org/10.1016/j.jenvman.2021.113409
  6. Comparison of disinfectants for drinking water: chlorine gas vs. on-site generated chlorine vol.27, pp.1, 2020, https://doi.org/10.4491/eer.2020.543
  7. Novel Ti/TiHx/SnO2-Sb2O5-NiO-CNT electrode for electrochemical Ozone Generation for degradation of toxic textile azo dyes vol.27, pp.3, 2020, https://doi.org/10.4491/eer.2020.429