DOI QR코드

DOI QR Code

Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes

  • Received : 2019.03.04
  • Accepted : 2019.06.13
  • Published : 2020.06.30

Abstract

In this study soft computing techniques including, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were investigated for the prediction of Cr(VI) transport efficiency by novel Polymer Inclusion Membranes (PIMs). Transport experiments carried out by varying parameters such as time, film thickness, carrier type, carier rate, plasticizer type, and plasticizer rate. The predictive performance of ANN and ANFIS model was evaluated by using statistical performance criteria such as Root Mean Standard Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). Moreover, Sensitivity Analysis (SA) was carried out to investigate the effect of each input on PIMs Cr(VI) removal efficiency. The proposed ANN model presented reliable and valid results, followed by ANFIS model results. RMSE and MAE values were 0.00556, 0.00163 for ANN and 0.00924, 0.00493 for ANFIS model in the prediction of Cr(VI) removal efficiency on testing data sets. The R2 values were 0.973 and 0.867 on testing data sets by ANN and ANFIS, respectively. Results show that the ANN-based prediction model performed better than ANFIS. SA demonstrated that time; film thickness; carrier type and plasticizer type are major operating parameters having 33.61%, 26.85%, 21.07% and 8.917% contribution, respectively.

Keywords

References

  1. Pavithra KG, Jaikumar V, Kumar PS, Sundarrajan P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019;228:580-593. https://doi.org/10.1016/j.jclepro.2019.04.117
  2. Mishra S, Bharagava RN, More N, et al. Heavy metal contamination: An alarming threat to environment and human health. Environ. Biotechnol. 2019;103-125.
  3. Peng W, Li H, Liu Y, Song S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017;230:496-504. https://doi.org/10.1016/j.molliq.2017.01.064
  4. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017;5:2782-2799. https://doi.org/10.1016/j.jece.2017.05.029
  5. Bankar A, Nagaraja G. Recent trends in biosorption of heavy metals by Actinobacteria. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier; 2018. p. 257-275.
  6. Kumar P, Pournara A, Kim K.-H, Bansal V. Rapti S, Manos MJ. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog. Mater. Sci. 2017;86:25-74. https://doi.org/10.1016/j.pmatsci.2017.01.002
  7. Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019;76:17-38. https://doi.org/10.1016/j.jiec.2019.03.029
  8. Ebbers B, Ottosen L. M, Jensen PE. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochim. Acta. 2015;181:90-99. https://doi.org/10.1016/j.electacta.2015.04.097
  9. Shahrin S, Lau WJ, Kartohardjono S, et al. Development of adsorptive ultrafiltration membranes for heavy metal removal. In: Advanced nanomaterials for membrane synthesis and its applications. Amsterdam: Elsevier; 2019. p. 1-22.
  10. Chen M, Shafer-Peltier K, Randtke SJ, Peltier E. Competitive association of cations with poly (sodium 4-styrenesulfonate)( PSS) and heavy metal removal from water by PSS-assisted ultrafiltration. Chem. Eng. J. 2018;344:15-164.
  11. Tran T-K, Chiu K-F, Lin C-Y, Leu H-J. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. Int. J. Hydrogen Energ. 2017;42:27741-27748. https://doi.org/10.1016/j.ijhydene.2017.05.156
  12. Pabby AK, Rizvi SSH, Sastre AM. Handbook of nembrane separations chemical, pharmaceutical, food, and biotechnological applications. Vol. 1. Boca Raton:CRC Press; 2008.
  13. Han D, Row KH. Recent applications of ionic liquids in separation technology. Molecules 2010;15:2405-2426. https://doi.org/10.3390/molecules15042405
  14. Park Y-S, Chon T-S, Kwak I-S, Lek S. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Sci. Total Environ. 2004;327:105-122. https://doi.org/10.1016/j.scitotenv.2004.01.014
  15. Shetty GR, Chellam S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci. 2003;217:69-86. https://doi.org/10.1016/S0376-7388(03)00075-9
  16. Belanche L, Valdes JJ, Comas J, Roda IR, Poch M. Prediction of the bulking phenomenon in wastewater treatment plants. Artif. Intell. Eng. 2000;14:307-317. https://doi.org/10.1016/S0954-1810(00)00012-1
  17. Gholamreza A, Afshin M-D, Shiva HA, Nasrin R. Application of artificial neural networks to predict total dissolved solids in the river Zayanderud, Iran. Environ. Eng. Res. 2016;21:333-340. https://doi.org/10.4491/eer.2015.096
  18. Abraham A. Adaptation of fuzzy inference system using neural learning. In: Nedjah N, Macedo Mourelle L, eds. Fuzzy Systems Engineering. Berlin: Springer; 2005. p. 53-83.
  19. Elmolla ES, Chaudhuri M, Eltoukhy MM. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 2010;179:127-134. https://doi.org/10.1016/j.jhazmat.2010.02.068
  20. Cote M, Grandjean B, Lessard P, Thibault J. Dynamic modelling of the activated sludge process: Improving prediction using neural networks. Water Res. 1995;29:995-1004. https://doi.org/10.1016/0043-1354(95)93250-W
  21. Gontarski C, Rodrigues P. Simulation of an industrial wastewater treatment plant using artificial neural networks. Comput. Chem. Eng. 2000;24:1719-1723. https://doi.org/10.1016/S0098-1354(00)00449-X
  22. B. Eren, M. Yaqub, and V. Eyupoglu. A comparative study of artificial neural network models for the prediction of Cd removal efficiency of PIMs. Desalin. Water Treat. 2019;143:48-58. https://doi.org/10.5004/dwt.2019.23531
  23. Kardam A, Raj KR, Arora JK, Srivastava S. ANN modeling on predictions of biosorption efficiency of zea mays for the removal of Cr(III) And Cr(VI) from waste water. Int. J. Math. Trends Technol. 2011;2:23-29.
  24. Kabuba J, Mulaba-bafubiandi AF. The use of Neural Network for modeling of copper removal from aqueous solution by the ion-exchange process. In: International Conference on Mining, Mineral Processing and Metallurgical Engineering (ICMMME' 2013); 15-16 April 2013; Johannesburg. p. 131-135.
  25. Lingamdinne LP, Koduru JR, Chang Y-Y, Karri RR. Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J. Mol. Liq. 2018;250:202-211. https://doi.org/10.1016/j.molliq.2017.11.174
  26. Karri RR, Sahu JN. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc(II) by palm kernel shell based activated carbon from aqueous environment. J. Environ. Manage. 2018;206:178-191. https://doi.org/10.1016/j.jenvman.2017.10.026
  27. Madhloom HM. Modeling of Copper removal from simulated wastewater by adsorption on to fungal biomass using artificial neural network. Glob. J. Adv. Pure Appl. Sci. 2015;5:35-44.
  28. Kardam A, Raj KR, Arora JK, Srivastava MM, Sricastava S. Artificial neural network modeling for sorption of cadmium from aqueous system by shelled moringa oleifera seed powder as an agricultural waste. J. Water Resour. Prot. 2010;2:339-344. https://doi.org/10.4236/jwarp.2010.24039
  29. Fan M, Hu J, Cao R, Xiong K, Wei X. Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Sci. Rep. 2017;7:18040. https://doi.org/10.1038/s41598-017-18223-y
  30. Turgut HI, Eyupoglu V, Kumbasar RA, Sisman I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Sep. Purif. Technol. 2017;175:406-417. https://doi.org/10.1016/j.seppur.2016.11.056
  31. Eyupoglu V. Alkyl chain structure-dependent separation of Cr(VI) from acidic solutions containing various metal ions using liquid-liquid solvent extraction by butyl-based imidazolium bromide salts. Desal. Water Treat. 2016;57:17774-17789. https://doi.org/10.1080/19443994.2015.1085911
  32. Dombayci OA. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli-Turkey. Adv. Eng. Softw. 2010;41:141-147. https://doi.org/10.1016/j.advengsoft.2009.09.012
  33. Sgarlata C, Arena G, Longo E, Zhang D, Yang Y, Bartsch RA. Heavy metal separation with polymer inclusion membranes. J. Membr. Sci. 2008;323:444-451. https://doi.org/10.1016/j.memsci.2008.07.004
  34. Sug H. The effect of training set size for the performance of neural networks of classification. WSEAS Trans. Comput. 2010;9:1297-1306.
  35. Leardi R. Nature-inspired methods in chemometrics: Genetic algorithms and artificial neural networks. Amsterdam: Elsevier; 2003.
  36. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000;22:717-727. https://doi.org/10.1016/S0731-7085(99)00272-1
  37. Singh G, Kandasamy J, Shon HK, Cho J. Measuring treatment effectiveness of urban wetland using hybrid water quality - Artificial neural network (ANN) model. Desal. Water Treat. 2011;32:284-290. https://doi.org/10.5004/dwt.2011.2712
  38. Gunaydin O, Gokoglu A, Fener M. Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks. Adv. Eng. Softw. 2010;41:1115-1123. https://doi.org/10.1016/j.advengsoft.2010.06.008
  39. Ikizler SB, Aytekin M, Vekli M, Kocabas F. Prediction of swelling pressures of expansive soils using artificial neural networks. Adv. Eng. Softw. 2010;41:647-655. https://doi.org/10.1016/j.advengsoft.2009.12.005
  40. Jang JR. ANFIS Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993;23:665-685. https://doi.org/10.1109/21.256541
  41. Suparta W, Alhasa KM. Modeling of tropospheric delays using ANFIS. Amsterdam: Springer; 2016.
  42. Dogan E. Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrig. Drain. 2009;58:617-628. https://doi.org/10.1002/ird.445
  43. Sivanandam SN, Sumathi S, Deepa SN. Introduction to fuzzy logic using MATLAB. Amsterdam: Springer; 2007.
  44. Ismail AY, Ismail R, Darus IZ. Dynamic characterization of flexible vibrating structures using adaptive neuro-fuzzy inference system (ANFIS). In: 4th Student Conference on Research and Development; 27-28 June 2006; Shah Alam. p. 156-161.
  45. Mohdeb N, Mekideche MR. Determination of the relative magnetic permeability by using an adaptive neuro-fuzzy inference system and 2D-FEM. Prog. Electromagn. Res. 2010;22:237-255. https://doi.org/10.2528/PIERB10050201
  46. Walia N, Singh H, Sharma A. ANFIS: Adaptive neuro-fuzzy inference system-a survey. Int. J. Comput. Appl. 2015;123:32-38.
  47. Selma B, Chouraqui S. Neuro-fuzzy controller to navigate an unmanned vehicle. SpringerPlus 2013;2:188. https://doi.org/10.1186/2193-1801-2-188
  48. Siddique R, Aggarwal P, Aggarwal Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 2011;42:780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
  49. Dogan E, Ates A, Yilmaz EC, Eren B. Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand. Environ. Prog. 2008;27:439-446. https://doi.org/10.1002/ep.10295
  50. Eyoupoglu V, Yaqub M, Eren B. Assessment of neural network training algorithms for the prediction of polymeric inclusion membranes efficiency. SAU Fen Bilim. Enstitusu Derg. 2016;20:533-542.
  51. Eren B, Ileri R, Dogan E, Caglar N, Koyuncu I. Development of artificial neural network for prediction of salt recovery by nanofiltration from textile industry wastewaters. Desal. Water Treat. 2012;50:317-328. https://doi.org/10.1080/19443994.2012.719743
  52. Daliakopoulos IN, Coulibaly P, Tsanis IK. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005;309:229-240. https://doi.org/10.1016/j.jhydrol.2004.12.001

Cited by

  1. Application of Hydrophobic Alkylimidazoles in the Separation of Non-Ferrous Metal Ions across Plasticised Membranes—A Review vol.10, pp.11, 2020, https://doi.org/10.3390/membranes10110331
  2. Experimental and neural network modeling of micellar enhanced ultrafiltration for arsenic removal from aqueous solution vol.26, pp.1, 2020, https://doi.org/10.4491/eer.2019.261
  3. Prediction of heavy metals removal by polymer inclusion membranes using machine learning techniques vol.35, pp.3, 2021, https://doi.org/10.1111/wej.12699
  4. Application of data-driven machine learning to predict propranolol and trimethoprim removal using a managed aquifer recharge system vol.10, pp.1, 2020, https://doi.org/10.1016/j.jece.2021.106847
  5. Application of data-driven machine learning to predict propranolol and trimethoprim removal using a managed aquifer recharge system vol.10, pp.1, 2020, https://doi.org/10.1016/j.jece.2021.106847